1,171 research outputs found

    Classical and quantized aspects of dynamics in five dimensional relativity

    Get PDF
    A null path in 5D can appear as a timelike path in 4D, and for a certain gauge in 5D the motion of a massive particle in 4D obeys the usual quantization rule with an uncertainty-type relation. Generalizations of this result are discussed in regard to induced-matter and membrane theory.Comment: 26 pages, in press in Class. Quant. Gra

    The timing and location of dust formation in the remnant of SN 1987A

    Get PDF
    The discovery with the {\it Herschel Space Observatory} of bright far infrared and submm emission from the ejecta of the core collapse supernova SN\,1987A has been interpreted as indicating the presence of some 0.4--0.7\,M⊙_\odot of dust. We have constructed radiative transfer models of the ejecta to fit optical to far-infrared observations from the literature at epochs between 615 days and 24 years after the explosion, to determine when and where this unexpectedly large amount of dust formed. We find that the observations by day 1153 are consistent with the presence of 3×\times10−3^{-3}M⊙_\odot of dust. Although this is a larger amount than has previously been considered possible at this epoch, it is still very small compared to the amount present in the remnant after 24 years, and significantly higher dust masses at the earlier epochs are firmly ruled out by the observations, indicating that the majority of the dust must have formed at very late times. By 8515-9200 days after the explosion, 0.6--0.8\,M⊙_\odot of dust is present, and dust grains with radii greater than 2\,ÎŒ\mum are required to obtain a fit to the observed SED. This suggests that the dust mass increase at late times was caused by accretion onto and coagulation of the dust grains formed at earlier epochs. These findings provide further confirmation that core collapse supernovae can create large quantities of dust, and indicate that the reason for small dust masses being estimated in many cases is that the vast majority of the dust forms long after most supernovae have been detectable at mid-infrared wavelengths.Comment: 13 pages, 16 figures. Accepted for publication in MNRA

    Null Geodesics in Five Dimensional Manifolds

    Get PDF
    We analyze a class of 5D non-compact warped-product spaces characterized by metrics that depend on the extra coordinate via a conformal factor. Our model is closely related to the so-called canonical coordinate gauge of Mashhoon et al. We confirm that if the 5D manifold in our model is Ricci-flat, then there is an induced cosmological constant in the 4D sub-manifold. We derive the general form of the 5D Killing vectors and relate them to the 4D Killing vectors of the embedded spacetime. We then study the 5D null geodesic paths and show that the 4D part of the motion can be timelike -- that is, massless particles in 5D can be massive in 4D. We find that if the null trajectories are affinely parameterized in 5D, then the particle is subject to an anomalous acceleration or fifth force. However, this force may be removed by reparameterization, which brings the correct definition of the proper time into question. Physical properties of the geodesics -- such as rest mass variations induced by a variable cosmological ``constant'', constants of the motion and 5D time-dilation effects -- are discussed and are shown to be open to experimental or observational investigation.Comment: 19 pages, REVTeX, in press in Gen. Rel. Gra

    Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations

    Full text link
    An exact class of solutions of the 5D vacuum Einstein field equations (EFEs) is obtained. The metric coefficients are found to be non-separable functions of time and the extra coordinate ll and the induced metric on ll = constant hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D manifold and 3D and 4D submanifolds are in general curved, which distinguishes this solution from previous ones in the literature. The singularity structure of the manifold is explored: some models in the class do not exhibit a big bang, while other exhibit a big bang and a big crunch. For the models with an initial singularity, the equation of state of the induced matter evolves from radiation like at early epochs to Milne-like at late times and the big bang manifests itself as a singular hypersurface in 5D. The projection of comoving 5D null geodesics onto the 4D submanifold is shown to be compatible with standard 4D comoving trajectories, while the expansion of 5D null congruences is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy

    Gauge-Dependent Cosmological "Constant"

    Get PDF
    When the cosmological constant of spacetime is derived from the 5D induced-matter theory of gravity, we show that a simple gauge transformation changes it to a variable measure of the vacuum which is infinite at the big bang and decays to an astrophysically-acceptable value at late epochs. We outline implications of this for cosmology and galaxy formation.Comment: 14 pages, no figures, expanded version to be published in Class. Quantum Gra

    Induced Matter and Particle Motion in Non-Compact Kaluza-Klein Gravity

    Get PDF
    We examine generalizations of the five-dimensional canonical metric by including a dependence of the extra coordinate in the four-dimensional metric. We discuss a more appropriate way to interpret the four-dimensional energy-momentum tensor induced from the five-dimensional space-time and show it can lead to quite different physical situations depending on the interpretation chosen. Furthermore, we show that the assumption of five-dimensional null trajectories in Kaluza-Klein gravity can correspond to either four-dimensional massive or null trajectories when the path parameterization is chosen properly. Retaining the extra-coordinate dependence in the metric, we show the possibility of a cosmological variation in the rest masses of particles and a consequent departure from four-dimensional geodesic motion by a geometric force. In the examples given, we show that at late times it is possible for particles traveling along 5D null geodesics to be in a frame consistent with the induced matter scenario.Comment: 29 pages, accepted to GR

    Stabilization of test particles in Induced Matter Kaluza-Klein theory

    Get PDF
    The stability conditions for the motion of classical test particles in an n% n -dimensional Induced Matter Kaluza-Klein theory is studied. We show that stabilization requires a variance of the strong energy condition for the induced matter to hold and that it is related to the hierarchy problem. Stabilization of test particles in a FRW universe is also discussed.Comment: 15 pages, 1 figure, to appear in Class. Quantum Gra

    The Big Bang as a Phase Transition

    Full text link
    We study a five-dimensional cosmological model, which suggests that the universe bagan as a discontinuity in a (Higgs-type) scalar field, or alternatively as a conventional four-dimensional phase transition.Comment: 10 pages, 2 figures; typo corrected in equation (18); 1 reference added; version to appear in International Journal of Modern Physics

    Decaying Dark Energy in Higher-Dimensional Gravity

    Get PDF
    We use data from observational cosmology to put constraints on higher-dimensional extensions of general relativity in which the effective four-dimensional dark-energy density (or cosmological "constant") decays with time. In particular we study the implications of this decaying dark energy for the age of the universe, large-scale structure formation, big-bang nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two of these tests (age and the magnitude-redshift relation) place modest lower limits on the free parameter of the theory, a cosmological length scale L akin to the de Sitter radius. These limits will improve if experimental uncertainties on supernova magnitudes can be reduced around z=1.Comment: 11 pages, 5 figures, submitted to A&

    Wesson's IMT with a Weylian bulk

    Full text link
    The foundations of Wesson's induced matter theory are analyzed. It is shown that the 5D empty bulk must be regarded rather as a Weylian space than as a Riemannian one.The framework of a Weyl-Dirac version of Wesson's theory is elaborated and discussed. The bulk possesses in addition to the metric tensor a Weylian connection vector as well Dirac's gauge function; there are no sources (mass, current) in the bulk. On the 4D brane one obtains a geometrically based unified theory of gravitation and electromagnetism with mass, currents and equations induced by the 5D bulkComment: 29 page
    • 

    corecore