105 research outputs found

    Exercise-Training in Young Drosophila melanogaster Reduces Age-Related Decline in Mobility and Cardiac Performance

    Get PDF
    Declining mobility is a major concern, as well as a major source of health care costs, among the elderly population. Lack of mobility is a primary cause of entry into managed care facilities, and a contributing factor to the frequency of damaging falls. Exercise-based therapies have shown great promise in sustaining mobility in elderly patients, as well as in rodent models. However, the genetic basis of the changing physiological responses to exercise during aging is not well understood. Here, we describe the first exercise-training paradigm in an invertebrate genetic model system. Flies are exercised by a mechanized platform, known as the Power Tower, that rapidly, repeatedly, induces their innate instinct for negative geotaxis. When young flies are subjected to a carefully controlled, ramped paradigm of exercise-training, they display significant reduction in age-related decline in mobility and cardiac performance. Fly lines with improved mitochondrial efficiency display some of the phenotypes observed in wild-type exercised flies. The exercise response in flies is influenced by the amount of protein and lipid, but not carbohydrate, in the diet. The development of an exercise-training model in Drosophila melanogaster opens the way to direct testing of single-gene based genetic therapies for improved mobility in aged animals, as well as unbiased genetic screens for loci involved in the changing response to exercise during aging

    Sestrins are evolutionarily conserved mediators of exercise benefits.

    Get PDF
    Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the metabolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance

    d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75079/1/ACEL_504_sm_FigS1_TableS1-S2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/75079/2/j.1474-9726.2009.00504.x.pd

    Sestrins are evolutionarily conserved mediators of exercise benefits

    Get PDF
    Exercise is among the most effective interventions for age-associated mobility decline and metabolic dysregulation. Although long-term endurance exercise promotes insulin sensitivity and expands respiratory capacity, genetic components and pathways mediating the meta- bolic benefits of exercise have remained elusive. Here, we show that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise ben- efits. In both fly and mouse models, genetic ablation of Sestrins prevents organisms from acquiring metabolic benefits of exercise and improving their endurance through training. Conversely, Sestrin upregulation mimics both molecular and physiological effects of exercise, suggesting that it could be a major effector of exercise metabolism. Among the various targets modulated by Sestrin in response to exercise, AKT and PGC1α are critical for the Sestrin effects in extending endurance. These results indicate that Sestrin is a key integrating factor that drives the benefits of chronic exercise to metabolism and physical endurance

    A Phenotypically Robust Model of Spinal and Bulbar Muscular Atrophy in Drosophila

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is an X-linked disorder that affects males who inherit the androgen receptor (AR) gene with an abnormal CAG triplet repeat expansion. The resulting protein contains an elongated polyglutamine (polyQ) tract and causes motor neuron degeneration in an androgen-dependent manner. The precise molecular sequelae of SBMA are unclear. To assist with its investigation and the identification of therapeutic options, we report here a new model of SBMA in Drosophila melanogaster. We generated transgenic flies that express the full-length, human AR with a wild-type or pathogenic polyQ repeat. Each transgene is inserted into the same safe harbor site on the third chromosome of the fly as a single copy and in the same orientation. Expression of pathogenic AR, but not of its wild-type variant, in neurons or muscles leads to consistent, progressive defects in longevity and motility that are concomitant with polyQ-expanded AR protein aggregation and reduced complexity in neuromuscular junctions. Additional assays show adult fly eye abnormalities associated with the pathogenic AR species. The detrimental effects of pathogenic AR are accentuated by feeding flies the androgen, dihydrotestosterone. This new, robust SBMA model can be a valuable tool toward future investigations of this incurable disease

    Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects

    Get PDF
    A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders

    Impaired Spleen Formation Perturbs Morphogenesis of the Gastric Lobe of the Pancreas

    Get PDF
    Despite the extensive use of the mouse as a model for studies of pancreas development and disease, the development of the gastric pancreatic lobe has been largely overlooked. In this study we use optical projection tomography to provide a detailed three-dimensional and quantitative description of pancreatic growth dynamics in the mouse. Hereby, we describe the epithelial and mesenchymal events leading to the formation of the gastric lobe of the pancreas. We show that this structure forms by perpendicular growth from the dorsal pancreatic epithelium into a distinct lateral domain of the dorsal pancreatic mesenchyme. Our data support a role for spleen organogenesis in the establishment of this mesenchymal domain and in mice displaying perturbed spleen development, including Dh +/−, Bapx1−/− and Sox11−/−, gastric lobe development is disturbed. We further show that the expression profile of markers for multipotent progenitors is delayed in the gastric lobe as compared to the splenic and duodenal pancreatic lobes. Altogether, this study provides new information regarding the developmental dynamics underlying the formation of the gastric lobe of the pancreas and recognizes lobular heterogeneities regarding the time course of pancreatic cellular differentiation. Collectively, these data are likely to constitute important elements in future interpretations of the developing and/or diseased pancreas
    corecore