19 research outputs found

    Effects of spaceflight on rat pituitary cell function: Preflight and flight experiment for pituitary gland study on COSMOS, 1989

    Get PDF
    The secretory capacity of growth hormone (GH) and prolactin (PRL) cells prepared from rats flown in space on the 12.5 day mission of Cosmos 1887 and the 14 day mission of Cosmos 2044 was evaluated in several post-flight tests on Earth. The results showed statistically significant and repeatable decrements in hormone release, especially when biological assays (rather than immunological assays) were used in the tests. Significant and repeatable intracellular changes in GH cells from the flight animals were also found; most important were increases in the GH-specific cytoplasmic staining intensities and cytoplasmic areas occupied by hormore. Tail suspension of rats for 14 days, an established model for mimicking musculo-skeletal changes seen in spaceflown rats, results in some changes in GH and PRL cell function that were similar to those from spaceflown animals. Our results add to a growing body of data that described deconditioning of physiological systems in spaceflight and provide insights into the time frame that might be required for readaptation of the GH/PRL cell system upon return to Earth

    The pituitary growth hormone cell in space

    Get PDF
    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells

    Electrophoretic separation of cells and particles from rat pituitary and rat spleen

    Get PDF
    There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated

    Bioactive growth hormone in humans: Controversies, complexities and concepts

    Get PDF
    Objective: To revisit a finding, first described in 1978, which documented existence of a pituitary growth factor that escaped detection by immunoassay, but which was active in the established rat tibia GH bioassay. Methods: We present a narrative review of the evolution of growth hormone complexity, and its bio-detectability, from a historical perspective. Results: In humans under the age of 60, physical training (i.e. aerobic endurance and resistance training) are stressors which preferentially stimulate release of bioactive GH (bGH) into the blood. Neuroanatomical studies indicate a) that nerve fibers directly innervate the human anterior pituitary and b) that hind limb muscle afferents, in both humans and rats, also modulate plasma bGH. In the pituitary gland itself, molecular variants of GH, somatotroph heterogeneity and cell plasticity all appear to play a role in regulation of this growth factor. Conclusion: This review considers more recent findings on this often forgotten/neglected subject. Comparison testing of a) human plasma samples, b) sub-populations of separated rat pituitary somatotrophs or c) purified human pituitary peptides by GH bioassay vs immunoassay consistently yield conflicting results

    Recovery using “float” from high intensity stress on growth hormone-like molecules in resistance trained men

    Get PDF
    Objective The purpose of this study was to examine the influence of a novel “floatation-restricted environmental stimulation therapy” (floatation-REST) on growth hormone responses to an intense resistance exercise stress. Design Nine resistance trained men (age: 23.4 ± 2.5 yrs.; height: 175.3 ± 5.4 cm; body mass: 85.3 ± 7.9 kg) completed a balanced, crossover-controlled study design with two identical exercise trials, differing only in post-exercise recovery intervention (i.e., control or floatation-REST). A two-week washout period was used between experimental conditions. Plasma lactate was measured pre-exercise, immediately post-exercise and after the 1 h. recovery interventions. Plasma iGH was measured pre-exercise, immediately-post exercise, and after the recovery intervention, as well as 24 h and 48 h after the exercise test. The bGH-L was measured only at pre-exercise and following each recovery intervention. Results For both experimental conditions, a significant (P ≤ 0.05) increase in lactate concentrations were observed immediately post-exercise (~14 mmol • L-1) and remained slightly elevated after the recovery condition. The same pattern of responses was observed for iGH with no differences from resting values at 24 and 48 h of recovery. The bGH-L showed no exercise-induced changes following recovery with either treatment condition, however concentration values were dramatically lower than ever reported. Conclusion The use of floatation-REST therapy immediately following intense resistance exercise does not appear to influence anterior pituitary function in highly resistance trained men. However, the lower values of bGH suggest dramatically different molecular processing mechanisms at work in this highly trained population

    Bioactive growth hormone in older men and women: Its relationship to immune markers and healthspan

    Get PDF
    Objective: The consequences of age-related decline in the somatotropic axis of humans are complex and remain largely unresolved. We tested the hypothesis that hGH measurements of plasma by bioassay vs immunoassay from samples obtained from free-living, elderly individuals would reveal a dichotomy in GH activities that are correlated with the functional status of the donors, i.e. their healthspan. Design: Forty-one men and women of advanced age (men: N=16, age, 80.5±6.5years; height, 173.1±6.9cm; body mass, 81.8±13.0kg) and (women: N=25, age, 80.7±7.2years; height, 157.7±6.0cm; body mass, 68.8±17kg), were recruited for a cross-sectional study. Participants filled out PROMIS (Patient-Reported Outcomes Measurement Information System, U. S. Department of Health and Human Services) scales, undertook physical performance tests and had fasted blood samples obtained at rest for measurement of hormonal and immunology biomarkers. Results: When measured by the well-established rat tibial line GH bioassay, one half of the plasma samples (n=20) contained bioassayable GH (bGH), but the other half (n=21) failed to mount increases in tibial plate width above saline injected controls. This difference did not correlate with the age, sex or physical functionality of the plasma donor. It also did not correlate with hGH concentrations measured by immunoassay. In those cases in which bGH was detected, various hierarchical regression models predicted that GHRH, c-peptide, VEGF, NPY, IL-4 and T-regulatory lymphocytes were associated with the difference and predicted bGH. Conclusion: Results from this study suggest that the actions of bGH at the cellular level may be modified by other factors and that this may explain the lack of correlations observed in this study

    Growth hormone pulsatility profile characteristics following acute heavy resistance exercise

    No full text
    Cette étude cherche à démontrer les effets d'un entraînement lourd de résistance sur les variations de concentration d'hormones de croissance pendant la nui

    Hormonal stress responses of growth hormone and insulin-like growth factor-I in highly resistance trained women and men

    No full text
    The purpose of this study was to examine the responses of growth hormone (GH) and insulin-like growth factor-I (IGF–I) to intense heavy resistance exercise in highly trained men and women to determine what sex-dependent responses may exist. Subjects were highly resistance trained men (N = 8, Mean ± SD; age, yrs., 21 ± 1, height, cm, 175.3 ± 6.7, body mass, kg, 87.0 ± 18.5, % body fat, 15.2 ± 5.4, squat X body mass, 2.1 ± 0.4; and women (N = 7; Mean ± SD, age, yrs. 24 ± 5, height, cm 164.6 ± 6.7, body mass, kg 76.4 ± 8.8, % body fat, 26.9 ± 5.3, squat X body mass, 1.7 ± 0.6). An acute resistance exercise test protocol (ARET) consisted of 6 sets of 10 repetitions at 80% of the 1 RM with 2 min rest between sets was used as the stressor. Blood samples were obtained pre-exercise, after 3 sets, and then immediately after exercise (IP), 5, 15, 30, and 70 min post-exercise for determination of blood lactate (HLa), and plasma glucose, insulin, cortisol, and GH. Determination of plasma concentrations of IGF–I, IGF binding proteins 1, 2, and 3 along with molecular weight isoform factions were determined at pre, IP and 70 min. GH significantly (P ≤ 0.05) increased at all time points with resting concentrations significantly higher in women. Significant increases were observed for HLa, glucose, insulin, and cortisol with exercise and into recovery with no sex-dependent observations. Women showed IGF-I values that were higher than men at all times points with both seeing exercise increases. IGFBP-1 and 2 showed increase with exercise with no sex-dependent differences. IGFBP-3 concentrations were higher in women at all-time points with no exercise induced changes. Both women and men saw an exercise induced increase with significantly higher values in GH in only the mid-range (30-60 kD) isoform. Only women saw an exercise induced increase with significantly higher values for IGF fractions only in the mid-range (30–60 kD) isoform, which were significantly greater than the men at the IP and 70 min post-exercise time points. In conclusion, the salient findings of this investigation were that in highly resistance trained men and women, sexual dimorphisms exist but appear different from our prior work in untrained men and women and appear to support a sexual dimorphism related to compensatory aspects in women for anabolic mediating mechanisms in cellular interactions
    corecore