714 research outputs found

    Structural and electronic properties of the graphene/Al/Ni(111) intercalation-like system

    Full text link
    Decoupling of the graphene layer from the ferromagnetic substrate via intercalation of sp metal has recently been proposed as an effective way to realize single-layer graphene-based spin-filter. Here, the structural and electronic properties of the prototype system, graphene/Al/Ni(111), are investigated via combination of electron diffraction and spectroscopic methods. These studies are accompanied by state-of-the-art electronic structure calculations. The properties of this prospective Al-intercalation-like system and its possible implementations in future graphene-based devices are discussed.Comment: 20 pages, 8 figures, and supplementary materia

    Pacific sea surface temperature associations with southwestern United States summer rainfall and atmospheric circulation

    Get PDF
    Pacific sea surface temperatures (SSTs) are examined for their associations with (1) summer rainfall, and (2) the latitude location of the mid-tropospheric subtropical high pressure ridge (STR) in the southwestern United States during 1945 to 1986. Extreme northward (southward) displacements of STR are associated with wet (dry) summers over Arizona and an enhanced (weakened) gradient of SST off the California and Baja coasts. These tend to follow winters marked by positive (negative) phases of the PNA, Pacific/North America, teleconnection pattern. Recent decadal variations of Arizona summer rainfall (1950s wet; 1970s dry) appear similarly related to southwestern United States synoptic circulation and eastern Pacific SSTs

    Induced magnetism of carbon atoms at the graphene/Ni(111) interface

    Full text link
    We report an element-specific investigation of electronic and magnetic properties of the graphene/Ni(111) system. Using magnetic circular dichroism, the occurrence of an induced magnetic moment of the carbon atoms in the graphene layer aligned parallel to the Ni 3d magnetization is observed. We attribute this magnetic moment to the strong hybridization between C π\pi and Ni 3d valence band states. The net magnetic moment of carbon in the graphene layer is estimated to be in the range of 0.050.1μB0.05-0.1 \mu_B per atom.Comment: 10 pages, 3 figure

    The Sweetest Girl of All / music by Otto M. Hensman; words by John A. Hensman

    Get PDF
    Cover: a drawing of a woman in a garden; photo inset of Miss Edna Wallage Hopper; Publisher: Weser Bros. (New York)https://egrove.olemiss.edu/sharris_b/1028/thumbnail.jp

    Spin-Pure Stochastic-CASSCF via GUGA-FCIQMC Applied to Iron-Sulfur Clusters.

    Get PDF
    Funder: Max-Planck-GesellschaftIn this work, we demonstrate how to efficiently compute the one- and two-body reduced density matrices within the spin-adapted full configuration interaction quantum Monte Carlo (FCIQMC) method, which is based on the graphical unitary group approach (GUGA). This allows us to use GUGA-FCIQMC as a spin-pure configuration interaction (CI) eigensolver within the complete active space self-consistent field (CASSCF) procedure and hence to stochastically treat active spaces far larger than conventional CI solvers while variationally relaxing orbitals for specific spin-pure states. We apply the method to investigate the spin ladder in iron-sulfur dimer and tetramer model systems. We demonstrate the importance of the orbital relaxation by comparing the Heisenberg model magnetic coupling parameters from the CASSCF procedure to those from a CI-only (CASCI) procedure based on restricted open-shell Hartree-Fock orbitals. We show that the orbital relaxation differentially stabilizes the lower-spin states, thus enlarging the coupling parameters with respect to the values predicted by ignoring orbital relaxation effects. Moreover, we find that, while CASCI results are well fit by a simple bilinear Heisenberg Hamiltonian, the CASSCF eigenvalues exhibit deviations that necessitate the inclusion of biquadratic terms in the model Hamiltonian

    Charge and spin Hall effect in graphene with magnetic impurities

    Full text link
    We point out the existence of finite charge and spin Hall conductivities of graphene in the presence of a spin orbit interaction (SOI) and localized magnetic impurities. The SOI in graphene results in different transverse forces on the two spin channels yielding the spin Hall current. The magnetic scatterers act as spin-dependent barriers, and in combination with the SOI effect lead to a charge imbalance at the boundaries. As indicated here, the charge and spin Hall effects should be observable in graphene by changing the chemical potential close to the gap.Comment: 7 page
    corecore