7 research outputs found

    The role of FUBP1 during differentiation of murine ESCs

    No full text
    Embryonale Stammzellen (ESCs) sind ein wichtiges Werkzeug zur Untersuchung der frĂŒhen embryonalen Entwicklung. ESCs können mit Hilfe neuer Technologien zur Modifikation von Genen (z.B. mit dem CRISPR/Cas9 System) genetisch manipuliert werden. Daraus resultierende „knockout“ ES Zelllinien können helfen, die physiologische Rolle von Proteinen wĂ€hrend der Differenzierung zu verstehen. Transkriptionsfaktoren, die schnell und spezifisch Signalwege regulieren, spielen wĂ€hrend der Embryonalentwicklung und wĂ€hrend der Differenzierung von ESCs in vielen verschiedenen Zelltypen eine essentielle Rolle. Der Transkriptionsregulator „Far Upstream Binding Protein 1“ (FUBP1) ist ein Protein, welches eine ganz bestimmte einzelstrĂ€ngige DNA Sequenz, das „Far Upstream Sequenz Element“, erkennt, bindet, und dadurch Gene wie z.B c-myc oder p21 reguliert. Mit der Entwicklung zweier Fubp1 Genfallen MausstĂ€mme (Fubp1 GT) sollte die Frage nach der physiologischen Funktion von FUBP1 beantwortet werden. Die homozygoten FUBP1-defizienten GT Embryonen sterben im Mutterleib ungefĂ€hr am Tag E15.5 der Embryonalentwicklung. Sie sind kleiner als Wildtypembryonen und zeigen ein anĂ€misches Aussehen. Daher wurden diese Mausmodelle hinsichtlich der HĂ€matopoese untersucht, die zu diesem Zeitpunkt vor allem in der Leber stattfindet. Es konnte eine signifikante Reduktion der hĂ€matopoetischen Stammzellen (HSCs) festgestellt werden und zusĂ€tzlich war die langfristige Repopulation der FUBP1-/--Stammzellen im Knochenmark in Transplantationsexperimenten reduziert. In der vorliegenden Arbeit wurde die Rolle von FUBP1 in einem weiteren Stammzellsystem analysiert und gleichzeitig seine Bedeutung in anderen Zelltypen der frĂŒhen Embryonalentwicklung untersucht. Die Quantifizierung der FUBP1 Expression in den ESCs und wĂ€hrend der Differenzierung zu sogenannten `embryoid bodies` (EBs) zeigten eine starke Expression auf mRNA- und auf Proteinebene. Nach der erfolgreichen Optimierung der Differenzierung von murinen ESCs wurden Fubp1 „knockout“ (KO) ESC Klone mit Hilfe der CRISPR/Cas9 Technologie etabliert. Die molekularbiologische Analyse der ESCs zeigte eine signifikante Erhöhung der Oct4 mRNA-Expression, wĂ€hrend Nanog und die Differenzierungsmarker Brachyury, Nestin und Sox17 unverĂ€ndert und in vergleichbarer Menge zu den Kontrollen vorhanden waren. WĂ€hrend der Differenzierung der Fubp1 KO Klone zu EBs zeigte sich eine signifikante Reduktion mesodermaler Marker wie Flk-1, SnaiI, Snai2, Bmp4 und FgfR2. Mit Hilfe durchflusszytometrischer Analysen bestĂ€tigte sich die verzögerte Bildung mesodermaler Zellen (Brachyury- und Flk-1-exprimierender Zellen) in den Fubp1 KO Klonen der EBs an den Tagen 3, 4 und 5 nach Beginn der Differenzierung. Die Anwendung einer Ko-Kultivierung auf OP9 Zellen zur Differenzierung der ESCs in hĂ€matopoetische Linien sollte zeigen, ob der Fubp1 KO ESCs ein Defekt in der frĂŒhen Entwicklung hĂ€matopoetischer Stammzellen zu beobachten ist. Erneut konnte am Tag 5 der ESC-Differenzierung in der OP9 Ko-Kultur eine signifikante Reduktion der mesodermalen (Flk-1+) Zellen festgestellt werden. Die weitere Differenzierung zu hĂ€matopoetischen CD45+ Zellen zeigte jedoch keinen Unterschied im prozentualen Anteil CD45+ Zellen am Tag 12 der Differenzierung. Auch die gezielte Differenzierung zu erythroiden Zellen durch Zugabe des Zytokins EPO zum Medium zeigte keinen signifikanten Unterschied im Differenzierungsgrad der erythroiden Zellen zwischen Kontroll- und Fubp1 KO Klonen. In weiteren Experimenten habe ich in dieser Arbeit die Expression von FUBP1 in WT Embryos an den Tagen E9.5 und E13.5 der Embryonalentwicklung untersucht. Hierbei zeigte sich in beiden Entwicklungsstadien eine immunhistochemische AnfĂ€rbung von FUBP1 in den meisten Zellen des Embryos. Die Annahme, dass die Abwesenheit von FUBP1 in der Embryonalentwicklung zu verstĂ€rkten apoptotischen VorgĂ€ngen fĂŒhren könnte und gleichzeitig die massive Expansion von Zellen gestört sein könnte wurde mit Hilfe immunhistochemischer FĂ€rbung von „cleaved Caspase 3“ (Apoptosemarker) und „Ki-67“ (Proliferationsmarker) in den homozygoten Fubp1 GT Embryos an den Tagen E9.5 und E13.5 nicht bestĂ€tigt. Die Ergebnisse dieser Arbeit lassen darauf schließen, dass die Regulation von Apoptose und Proliferation durch FUBP1 wĂ€hrend der Embryonalentwicklung nicht die Hauptrolle von FUBP1 darstellt. Es zeigte sich jedoch, dass FUBP1 als Transkriptionsregulator wichtig fĂŒr die mesodermale Differenzierung von ESCs ist. Zu beobachten war, dass es in den FUBP1-defizienten ESCs zu einer Verzögerung der mesodermalen Differenzierung kommt. Es konnte bereits gezeigt werden, dass FUBP1 essenziell fĂŒr die Selbsterneuerung von HSCs ist. Dies macht deutlich, dass FUBP1 neben der Proliferation und Apoptose ein breiteres Spektrum an Signalwegen reguliert, die fĂŒr Stammzellen und deren Differenzierung von Bedeutung sind

    Delayed mesoderm and erythroid differentiation of murine embryonic stem cells in the absence of the transcriptional regulator FUBP1

    Get PDF
    The transcriptional regulator far upstream binding protein 1 (FUBP1) is essential for fetal and adult hematopoietic stem cell (HSC) self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs) and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO) ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs), absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice

    PRMT6 activates cyclin D1 expression in conjunction with the transcription factor LEF1

    No full text
    The establishment of cell type specific gene expression by transcription factors and their epigenetic cofactors is central for cell fate decisions. Protein arginine methyltransferase 6 (PRMT6) is an epigenetic regulator of gene expression mainly through methylating arginines at histone H3. This way it influences cellular differentiation and proliferation. PRMT6 lacks DNA-binding capability but is recruited by transcription factors to regulate gene expression. However, currently only a limited number of transcription factors have been identified, which facilitate recruitment of PRMT6 to key cell cycle related target genes. Here, we show that LEF1 contributes to the recruitment of PRMT6 to the central cell cycle regulator CCND1 (Cyclin D1). We identified LEF1 as an interaction partner of PRMT6. Knockdown of LEF1 or PRMT6 reduces CCND1 expression. This is in line with our observation that knockdown of PRMT6 increases the number of cells in G1 phase of the cell cycle and decreases proliferation. These results improve the understanding of PRMT6 activity in cell cycle regulation. We expect that these insights will foster the rational development and usage of specific PRMT6 inhibitors for cancer therapy

    Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells

    No full text
    Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs. [Display omitted] ‱AML-iPSC-derived hematopoietic cells recapitulate a LSC hierarchy‱iLSCs can be easily prospectively isolated‱A LSC 16-gene set correlates with AML patient survival‱The RUNX1 TF is critical for the maintenance of LSCs across AML genetic subgroups Wesely et al. report that AML-iPSC-derived hematopoietic cells are hierarchically organized and contain cells with hallmark features of LSCs (iLSCs). Through integrative genomic studies of bulk and single-cell transcriptomes and chromatin accessibility, they derive a LSC gene signature and identify RUNX1 as an AML LSC dependency with therapeutic implications

    FAM96A is a novel pro-apoptotic tumor suppressor in gastrointestinal stromal tumors

    No full text
    The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), “fibroblast-like cells” (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription—polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis
    corecore