444 research outputs found

    Multidimensional Mass Spectrometry of Synthetic Polymers and Advanced Materials

    Full text link
    Multidimensional mass spectrometry interfaces a suitable ionization technique and mass analysis (MS) with fragmentation by tandem mass spectrometry (MS2) and an orthogonal online separation method. Separation choices include liquid chromatography (LC) and ion‐mobility spectrometry (IMS), in which separation takes place pre‐ionization in the solution state or post‐ionization in the gas phase, respectively. The MS step provides elemental composition information, while MS2 exploits differences in the bond stabilities of a polymer, yielding connectivity and sequence information. LC conditions can be tuned to separate by polarity, end‐group functionality, or hydrodynamic volume, whereas IMS adds selectivity by macromolecular shape and architecture. This Minireview discusses how selected combinations of the MS, MS2, LC, and IMS dimensions can be applied, together with the appropriate ionization method, to determine the constituents, structures, end groups, sequences, and architectures of a wide variety of homo‐ and copolymeric materials, including multicomponent blends, supramolecular assemblies, novel hybrid materials, and large cross‐linked or nonionizable polymers.More dimensions for MS: Multidimensional mass spectrometry combines mass analysis with tandem mass spectrometry fragmentation and an orthogonal separation method, such as liquid chromatography (LC) fractionation or ion‐mobility spectrometry (IMS), to achieve top‐down characterization of the composition, end groups, connectivity, and architecture of synthetic materials. CCS=collision cross‐section; CE=collision energy.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137445/1/anie201607003.pd

    The Sodium Ion Affinities of Simple Di-, Tri-, and Tetrapeptides

    Get PDF
    The sodium ion affinities (binding energies) of nineteen peptides containing 2-4 residues have been determined by experimental and computational approaches. Na+-bound heterodimers with amino acid and peptide ligands (Pep1, Pep2) were produced by electrospray ionization. The dissociations of these Pep1–Na+–Pep2 ions to Pep1–Na+ and Pep2–Na+ were examined by collisionally activated dissociation to construct a ladder of relative affinities via the kinetic method. The accuracy of this ladder was subsequently ascertained by experiments using several excitation energies for four peptide pairs. The relative scale was converted to absolute affinities by anchoring the relative values to the known Na+ affinity of GlyGly. The Na+ affinities of AlaAla, HisGly, GlyHis, GlyGlyGly, AlaAlaAla, GlyGlyGlyGly, and AlaAlaAlaAla were also calculated at the MP2(full)/6-311 + G(2d,2p) level of ab initio theory using geometries that were optimized at the MP2(full)/6-31G(d) level for AlaAla or HF/6-31G(d) level for the other peptides; the resulting values agree well with experimental Na+ affinities. Increasing the peptide size is found to dramatically augment the Na+ binding energy. The calculations show that in nearly all cases, all available carbonyl oxygens are sodium binding sites in the most stable structures. Whenever side chains are available, as in HisGly and GlyHis, specific additional binding sites are provided to the cation. Oligoglycines and oligoalanines have similar binding modes for the di- and tripeptides, but differ significantly for the tetrapeptides: while the lowest energy structure of GlyGlyGlyGly–Na+ has the peptide folded around the ion with all four carbonyl oxygens in close contact with Na+, that of AlaAlaAlaAla–Na+ involves a pseudo-cyclic peptide in which the C and N termini interact via hydrogen bonding, while Na+ sits on top of the oxygens of three nearly parallel C=O bonds

    Self-assembly of polyoxometalate-peptide hybrids in solution: elucidating the contributions of multiple possible driving forces

    Get PDF
    Incorporating the building blocks of nature (e.g., peptides and DNA) into inorganic polyoxometalate (POM) clusters is a promising approach to improve the compatibilities of POMs in biological fields. To extend their biological applications, it is necessary to understand the importance of different non‐covalent interactions during self‐organization. A series of Anderson POM–peptide hybrids have been used as a simple model to demonstrate the role of different interactions in POM–peptide (biomolecules) systems. Regardless of peptide chain length, these hybrids follow similar solution behaviors, forming hollow, spherical supramolecular structures in acetonitrile/water mixed solvents. The incorporation of peptide tails introduces interesting stimuli‐responsive properties to temperature, hybrid concentration, solvent polarity and ionic strength. Unlike the typical bilayer amphiphilic vesicles, they are found to follow the blackberry‐type assemblies of hydrophilic macroions, which are regulated by electrostatic interaction and hydrogen bonding. The formation of electrostatic assemblies before the supramolecular formation is confirmed by ion‐mobility mass spectrometry (IMS‐MS)

    Trehalose Glycopolymer Enhances Both Solution Stability and Pharmacokinetics of a Therapeutic Protein

    Get PDF
    Biocompatible polymers such as poly(ethylene glycol) (PEG) have been successfully conjugated to therapeutic proteins to enhance their pharmacokinetics. However, many of these polymers, including PEG, only improve the in vivo lifetimes and do not protect proteins against inactivation during storage and transportation. Herein, we report a polymer with trehalose side chains (PolyProtek) that is capable of improving both the external stability and the in vivo plasma half-life of a therapeutic protein. Insulin was employed as a model biologic, and high performance liquid chromatography and dynamic light scattering confirmed that addition of trehalose glycopolymer as an excipient or covalent conjugation prevented thermal or agitation-induced aggregation of insulin. The insulin-trehalose glycopolymer conjugate also showed significantly prolonged plasma circulation time in mice, similar to the analogous insulin-PEG conjugate. The insulin-trehalose glycopolymer conjugate was active as tested by insulin tolerance tests in mice and retained bioactivity even after exposure to high temperatures. The trehalose glycopolymer was shown to be non-toxic to mice up to at least 1.6 mg/kg dosage. These results together suggest that the trehalose glycopolymer should be further explored as an alternative to PEG for long circulating protein therapeutics

    Modeling Fungal Melanin Buildup: Biomimetic Polymerization of 1,8-Dihydroxynaphthalene Mapped by Mass Spectrometry

    Get PDF
    Due to the emerging biomedical relevance and technological potential of fungal melanins, and prompted by the virtual lack of information about their structural arrangement, an optimized synthetic protocol has been devised for a potential structural model of Ascomyces allomelanin through enzyme-catalyzed oxidative polymerization of 1,8-dihydroxynaphthalene (1,8-DHN). Electrospray ionization mass spectrometry (ESI-MS) measurements of freshly synthesized DHN-polymer recorded in the negative ion mode allowed detection of oligomers up to m/z 4000, separated by 158 Da, corresponding to the in-chain DHN-unit. The dominant peaks were assigned to singly-charged distribution, up to 23 repeating units, whereas a doubly charged polymer distribution was also detectable. Chemical derivatization, ultra-performance liquid chromatography (UPLC)-ESI MS, and MS/MS data confirmed that oxidative polymerization of 1,8-DHN proceeds through C−C coupling of the naphthalene rings. The new insights reported here into synthetic 1,8-DHN oligomers/polymers as a mimic of fungal melanins may guide novel interesting advances and applications in the field of biomimetic functional material

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)
    • 

    corecore