9 research outputs found

    Theory, Image Simulation, and Data Analysis of Chemical Release Experiments

    Get PDF
    The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments

    Optical imaging of cloud-to-stratosphere/mesosphere lightning over the Amazon Basin (CS/LAB)

    Get PDF
    The purpose of the CS/LAB project was to obtain images of cloud to stratosphere lightning discharges from aboard NASA's DC-8 Airborne Laboratory while flying in the vicinity of thunderstorms over the Amazon Basin. We devised a low light level imaging package as an add-on experiment to an airborne Laboratory deployment to South America during May-June, 1993. We were not successful in obtaining the desired images during the South American deployment. However, in a follow up flight over the American Midwest during the night of July 8-9, 1993 we recorded nineteen examples of the events over intense thunderstorms. From the observations were estimated absolute brightness, terminal altitudes, flash duration, horizontal extents, emission volumes, and frequencies relative to negative and positive ground strokes

    SR90, strontium shaped-charge critical ionization velocity experiment

    Get PDF
    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density

    Convection and electrodynamic signatures in the vicinity of a Sun-aligned arc: Results from the Polar Acceleration Regions and Convection Study (Polar ARCS)

    Get PDF
    An experimental campaign designed to study high-latitude auroral arcs was conducted in Sondre Stromfjord, Greenland, on February 26, 1987. The Polar Acceleration Regions and Convection Study (Polar ARCS) consisted of a coordinated set of ground-based, airborne, and sounding rocket measurements of a weak, sun-aligned arc system within the duskside polar cap. A rocket-borne barium release experiment, two DMSP satellite overflights, all-sky photography, and incoherent scatter radar measurements provided information on the large-scale plasma convection over the polar cap region while a second rocket instrumented with a DC magnetometer, Langmuir and electric field probes, and an electron spectrometer provided measurements of small-scale electrodynamics. The large-scale data indicate that small, sun-aligned precipitation events formed within a region of antisunward convection between the duskside auroral oval and a large sun-aligned arc further poleward. This convection signature, used to assess the relationship of the sun-aligned arc to the large-scale magnetospheric configuration, is found to be consistent with either a model in which the arc formed on open field lines on the dusk side of a bifurcated polar cap or on closed field lines threading an expanded low-latitude boundary layer, but not a model in which the polar cap arc field lines map to an expanded plasma sheet. The antisunward convection signature may also be explained by a model in which the polar cap arc formed on long field lines recently reconnected through a highly skewed plasma sheet. The small-scale measurements indicate the rocket passed through three narrow (less than 20 km) regions of low-energy (less than 100 eV) electron precipitation in which the electric and magnetic field perturbations were well correlated. These precipitation events are shown to be associated with regions of downward Poynting flux and small-scale upward and downward field-aligned currents of 1-2 micro-A/sq m. The paired field-aligned currents are associated with velocity shears (higher and lower speed streams) embedded in the region of antisunward flow

    Scale changing and spectral analysis of analog chart records

    No full text
    UAG R-184Data which are contained only in the form of a trace on a strip chart record or on film often may not be fully utilized because of the time and difficulty required for conversion to other forms for analysis. A device is described herein for manually trace following chart records to produce an electrical analog signal. The output signal may be recorded on a strip chart to produce desired amplitude or time scale changes. Time variations of spectral content may be measured by recording the output on a slow speed tape recorder—then speeding up the playback for sonograph analysis. These techniques have been found useful for rapid and inexpensive analysis of analog chart records such as magnetograms.This work was supported by National Science Foundation, Grant GP-4647.Abstract – Table of contents – List of illustrations – Introduction – Description of the equipment – Scale changing – Spectral analysis – Acknowledgements – Bibliography

    Bibliography of Nigerian Sculpture

    No full text
    corecore