5,101 research outputs found

    Predicted multiply-imaged X-ray AGNs in the XXL survey

    Get PDF
    We estimate the incidence of multiply-imaged AGNs among the optical counterparts of X-ray selected point-like sources in the XXL field. We also derive the expected statistical properties of this sample, such as the redshift distribution of the lensed sources and of the deflectors that lead to the formation of multiple images, modelling the deflectors using both spherical (SIS) and ellipsoidal (SIE) singular isothermal mass distributions. We further assume that the XXL survey sample has the same overall properties as the smaller XMM-COSMOS sample restricted to the same flux limits and taking into account the detection probability of the XXL survey. Among the X-ray sources with a flux in the [0.5-2] keV band larger than 3.0x1015^{-15} erg cm2^{-2} s1^{-1} and with optical counterparts brighter than an r-band magnitude of 25, we expect ~20 multiply-imaged sources. Out of these, ~16 should be detected if the search is made among the seeing-limited images of the X-ray AGN optical counterparts and only one of them should be composed of more than two lensed images. Finally, we study the impact of the cosmological model on the expected fraction of lensed sources.Comment: 15 pages, 7 figures, 1 table, accepted for publication in MNRA

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy

    Get PDF
    Introduction To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly. Material and Methods Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504). For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined Results The systematic (and random errors) in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0), 2.6(3.9) and 2.9(3.9) mm; for prostate bed, 1.7(2.0), 2.2(3.6) and 2.6(3.1) mm; for cervix, 2.8(3.4), 2.3(4.6) and 3.2(3.9) mm; for rectum, 1.6(3.1), 2.1(2.9) and 2.5(3.8) mm; for anal, 1.7(3.7), 2.1(5.1) and 2.5(4.8) mm; for head and neck, 1.9(2.3), 1.4(2.0) and 1.7(2.2) mm; for brain, 1.0(1.5), 1.1(1.4) and 1.0(1.1) mm; and for mediastinum, 3.3(4.6), 2.6(3.7) and 3.5(4.0) mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm) and the largest for mediastinum (11.5, 9.1 and 11.6mm). For pelvic treatments the means (and standard deviations) were 7.3 (1.6), 8.5 (0.8) and 9.6 (0.8) mm. Conclusions Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies

    Superconducting properties of nanocrystalline MgB2_2 thin films made by an in situ annealing process

    Full text link
    We have studied the structural and superconducting properties of MgB2_2 thin films made by pulsed laser deposition followed by in situ annealing. The cross-sectional transmission electron microscopy reveals a nanocrystalline mixture of textured MgO and MgB2_2 with very small grain sizes. A zero-resistance transition temperature (Tc0T_{c0}) of 34 K and a zero-field critical current density (JcJ_c) of 1.3×1061.3 \times 10^6 A/cm2^2 were obtained. The irreversibility field was \sim 8 T at low temperatures, although severe pinning instability was observed. These bulk-like superconducting properties show that the in situ deposition process can be a viable candidate for MgB2_2 Josephson junction technologies

    Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model

    Full text link
    We present a realistic model of the fragile glass former orthoterphenyl and the results of extensive molecular dynamics simulations in which we investigated its basic static and dynamic properties. In this model the internal molecular interactions between the three rigid phenyl rings are described by a set of force constants, including harmonic and anharmonic terms; the interactions among different molecules are described by Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the temperature and momentum dependencies of the self-intermediate scattering function. The simulation data are compared with existing experimental results and with the main predictions of the Mode Coupling Theory.Comment: 20 pages and 28 postscript figure

    The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies

    Full text link
    This paper presents an analysis of the smoothness problem in cosmology by focussing on the ambiguities originated in the simplifying hypotheses aimed at observationally verifying if the large-scale distribution of galaxies is homogeneous, and conjecturing that this distribution should follow a fractal pattern in perturbed standard cosmologies. This is due to a geometrical effect, appearing when certain types of average densities are calculated along the past light cone. The paper starts reviewing the argument concerning the possibility that the galaxy distribution follows such a scaling pattern, and the premises behind the assumption that the spatial homogeneity of standard cosmology can be observable. Next, it is argued that to discuss observable homogeneity one needs to make a clear distinction between local and average relativistic densities, and showing how the different distance definitions strongly affect them, leading the various average densities to display asymptotically opposite behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results, showing that in a fully relativistic treatment some observational average densities of the flat Friedmann model are not well defined at z ~ 0.1, implying that at this range average densities behave in a fundamentally different manner as compared to the linearity of the Hubble law, well valid for z < 1. This conclusion brings into question the widespread assumption that relativistic corrections can always be neglected at low z. It is also shown how some key features of fractal cosmologies can be found in the Friedmann models. In view of those findings, it is suggested that the so-called contradiction between the cosmological principle, and the galaxy distribution forming an unlimited fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to gr-qc/9909093. Accepted for publication in "General Relativity and Gravitation
    corecore