6 research outputs found

    Uncovering hidden genetic variation in photosynthesis of field‐grown maize under ozone pollution

    Get PDF
    Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germ‐ plasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half‐diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of pho‐ tosynthetic traits and altered genetic correlations among traits. Hybrids from par‐ ents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop

    Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts

    No full text
    Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment

    Acclimation effects of heat waves and elevated [CO2] on gas exchange and chlorophyll fluorescence of northern red oak (Quercus rubra L.) seedlings

    No full text
    Heat wave frequency and intensity are predicted to increase. We investigated whether repeated exposure to heat waves would induce acclimation in Quercus rubra seedlings and considered [CO2] as an interacting factor. We measured gas exchange and chlorophyll fluorescence of seedlings grown in 380 (C A) or 700 (C E) ÎŒmol CO2 mol−1, and three temperature treatments (ambient, ambient +3 °C, and an ambient +12 °C heat wave every fourth week). Measurements were performed during the third and fourth +12 °C heat waves (July and August 2010) at Whitehall Forest, GA, USA. Additionally, previously unexposed seedlings were subjected to the August heat wave to serve as a control to determine acclimation of seedlings which were previously exposed. Seedlings with a history of heat wave exposure showed lower net photosynthesis (A net) and stomatal conductance (on average −47 and −38 %, respectively) than seedlings with no such history, when both were subjected to the same +12 °C heat wave. During both heat waves, A net significantly declined in the +12 °C treatment compared with the other treatments. Additionally, the A net decline during the August compared with the July heat wave was stronger in C E than in C A, suggesting that elevated [CO2] might have had a negative effect on acclimation capacity. We conclude that seedlings subjected to consecutive heat waves will moderate stomatal conductance outside the heat wave, to reduce water usage at lower temperatures, increasing survival at the expense of carbon assimilation
    corecore