1,533 research outputs found
Quasi-Moessbauer effect in two dimensions
Expressions for the absorption spectrum of a nucleus in a three- and a
two-dimensional crystal respectively are obtained analytically at zero and at
finite temperature respectively. It is found that for finite temperature in two
dimensions the Moessbauer effect vanishes but is replaced by what we call a
Quasi-Moessbauer effect. Possibilities to identify two-dimensional elastic
behavior are discussed.Comment: 18 pages, 5 figures, notation simplifie
Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence
We report on calculations of the translational and rotational short-time
self-diffusion coefficients and for suspensions of
charge-stabilized colloidal spheres. These diffusion coefficients are affected
by electrostatic forces and many-body hydrodynamic interactions (HI). Our
computations account for both two-body and three-body HI. For strongly charged
particles, we predict interesting nonlinear scaling relations and depending on volume fraction
, with essentially charge-independent parameters and . These
scaling relations are strikingly different from the corresponding results for
hard spheres. Our numerical results can be explained using a model of effective
hard spheres. Moreover, we perceptibly improve the known result for of
hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
The Effect of Chemical Information on the Spatial Distribution of Fruit Flies: II Parameterization, Calibration, and Sensitivity
In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well
Paramagnetic Phase of a Heavy-Fermion Compound, CeFePO, Probed by 57Fe M\"{o}ssbauer Spectroscopy
57Fe M\"{o}ssbauer spectroscopy was applied to an iron-based layered compound
CeFePO. At temperatures from 9.4 to 293 K, no magnetic splitting was observed
in the M\"ossbauer spectra of CeFePO indicating a paramagnetic phase of the Fe
magnetic sublattice. All the spectra were fitted with a small quadrupole
splitting, and the Debye temperature of CeFePO was found to be \sim448 K. The
isomer shift at room temperature, 0.32 mm/s, was almost equal to those of
LnFeAsO (Ln = La, Ce, Sm). Comparing s-electron density using the isomer shifts
and unit cell volumes, it was found that the Fe of CeFePO has a similar valence
state to other layered iron-based quaternary oxypnictides except LaFePO
Criticality in strongly correlated fluids
In this brief review I will discuss criticality in strongly correlated
fluids. Unlike simple fluids, molecules of which interact through short ranged
isotropic potential, particles of strongly correlated fluids usually interact
through long ranged forces of Coulomb or dipolar form. While for simple fluids
mechanism of phase separation into liquid and gas was elucidated by van der
Waals more than a century ago, the universality class of strongly correlated
fluids, or in some cases even existence of liquid-gas phase separation remains
uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic
Metallic behaviour of carrier-polarized C molecular layers: Experiment and Theory
Although C is a molecular crystal with a bandgap E of ~2.5 eV, we
show that E is strongly affected by injected charge. In sharp contrast to
the Coulomb blockade typical of quantum dots, E is {\it reduced} by the
Coulomb effects. The conductance of a thin C layer sandwiched between
metal (Al, Ag, Au, Mg and Pt) contacts is investigated. Excellent Ohmic
conductance is observed for Al electrodes protected with ultra-thin LiF layers.
First-principles calculations, Hubbard models etc., show that the energy gap of
C is dramatically reduced when electrons hop from C to
C.Comment: 4 PRL style pages, 2 figures. email: [email protected]
The Structure of the Vortex Liquid at the Surface of a Layered Superconductor
A density-functional approach is used to calculate the inhomogeneous vortex
density distribution in the flux liquid phase at the planar surface of a
layered superconductor, where the external magnetic field is perpendicular to
the superconducting layers and parallel to the surface. The interactions with
image vortices are treated within a mean field approximation as a functional of
the vortex density. Near the freezing transition strong vortex density
fluctuations are found to persist far into the bulk liquid. We also calculate
the height of the Bean-Livingston surface barrier.Comment: 8 pages, RevTeX, 2 figure
Scaling in Complex Systems: Analytical Theory of Charged Pores
In this paper we find an analytical solution of the equilibrium ion
distribution for a toroidal model of a ionic channel, using the Perfect
Screening Theorem (PST). The ions are charged hard spheres, and are treated
using a variational Mean Spherical Approximation (VMSA) .
Understanding ion channels is still a very open problem, because of the many
exquisite tuning details of real life channels. It is clear that the electric
field plays a major role in the channel behaviour, and for that reason there
has been a lot of work on simple models that are able to provide workable
theories. Recently a number of interesting papers have appeared that discuss
models in which the effect of the geometry, excluded volume and non-linear
behaviour is considered.
We present here a 3D model of ionic channels which consists of a charged,
deformable torus with a circular or elliptical cross section, which can be flat
or vertical (close to a cylinder). Extensive comparisons to MC simulations were
performed.
The new solution opens new possibilities, such as studying flexible pores,
and water phase transformations inside the pores using an approach similar to
that used on flat crystal surfaces
Effective Magnetic Hamiltonian and Ginzburg Criterion for Fluids
We develop further the approach of Hubbard and Schofield (Phys.Lett., A40
(1972) 245), which maps the fluid Hamiltonian onto a magnetic one. We show that
all coefficients of the resulting effective Landau-Ginzburg-Wilson (LGW)
Hamiltonian may be expressed in terms of the compressibility of a reference
fluid containing only repulsive interactions, and its density derivatives; we
calculate the first few coefficients in the case of the hard-core reference
fluid. From this LGW-Hamiltonian we deduce approximate mean-field relations
between critical parameters and test them on data for Lennard-Jones,
square-well and hard-core-Yukawa fluids. We estimate the Ginzburg criterion for
these fluids.Comment: 4 pages, LaTeX, To appear in Phys.Rev.
Phase separation in mixtures of colloids and long ideal polymer coils
Colloidal suspensions with free polymer coils which are larger than the
colloidal particles are considered. The polymer-colloid interaction is modeled
by an extension of the Asakura-Oosawa model. Phase separation occurs into
dilute and dense fluid phases of colloidal particles when polymer is added. The
critical density of this transition tends to zero as the size of the polymer
coils diverges.Comment: 5 pages, 3 figure
- âŠ