358 research outputs found
Black swans or dragon kings? A simple test for deviations from the power law
We develop a simple test for deviations from power law tails, which is based
on the asymptotic properties of the empirical distribution function. We use
this test to answer the question whether great natural disasters, financial
crashes or electricity price spikes should be classified as dragon kings or
'only' as black swans
Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime
Power-law tail behavior and the summation scheme of Levy-stable distributions
is the basis for their frequent use as models when fat tails above a Gaussian
distribution are observed. However, recent studies suggest that financial asset
returns exhibit tail exponents well above the Levy-stable regime (). In this paper we illustrate that widely used tail index estimates (log-log
linear regression and Hill) can give exponents well above the asymptotic limit
for close to 2, resulting in overestimation of the tail exponent in
finite samples. The reported value of the tail exponent around 3 may
very well indicate a Levy-stable distribution with .Comment: To be published in Int. J. Modern Physics C (2001) vol. 12 no.
Universal relaxation function in nonextensive systems
We have derived the dipolar relaxation function for a cluster model whose
volume distribution was obtained from the generalized maximum Tsallis
nonextensive entropy principle. The power law exponents of the relaxation
function are simply related to a global fractal parameter and for
large time to the entropy nonextensivity parameter . For intermediate times
the relaxation follows a stretched exponential behavior. The asymptotic power
law behaviors both in the time and the frequency domains coincide with those of
the Weron generalized dielectric function derived from an extension of the Levy
central limit theorem. They are in full agreement with the Jonscher
universality principle. Moreover our model gives a physical interpretation of
the mathematical parameters of the Weron stochastic theory and opens new paths
to understand the ubiquity of self-similarity and power laws in the relaxation
of large classes of materials in terms of their fractal and nonextensive
properties.Comment: Two figures. Submitted for publicatio
Entropy of the Nordic electricity market: anomalous scaling, spikes, and mean-reversion
The electricity market is a very peculiar market due to the large variety of
phenomena that can affect the spot price. However, this market still shows many
typical features of other speculative (commodity) markets like, for instance,
data clustering and mean reversion. We apply the diffusion entropy analysis
(DEA) to the Nordic spot electricity market (Nord Pool). We study the waiting
time statistics between consecutive spot price spikes and find it to show
anomalous scaling characterized by a decaying power-law. The exponent observed
in data follows a quite robust relationship with the one implied by the DEA
analysis. We also in terms of the DEA revisit topics like clustering,
mean-reversion and periodicities. We finally propose a GARCH inspired model but
for the price itself. Models in the context of stochastic volatility processes
appear under this scope to have a feasible description.Comment: 16 pages, 7 figure
Energy-Aware Cloud Management through Progressive SLA Specification
Novel energy-aware cloud management methods dynamically reallocate
computation across geographically distributed data centers to leverage regional
electricity price and temperature differences. As a result, a managed VM may
suffer occasional downtimes. Current cloud providers only offer high
availability VMs, without enough flexibility to apply such energy-aware
management. In this paper we show how to analyse past traces of dynamic cloud
management actions based on electricity prices and temperatures to estimate VM
availability and price values. We propose a novel SLA specification approach
for offering VMs with different availability and price values guaranteed over
multiple SLAs to enable flexible energy-aware cloud management. We determine
the optimal number of such SLAs as well as their availability and price
guaranteed values. We evaluate our approach in a user SLA selection simulation
using Wikipedia and Grid'5000 workloads. The results show higher customer
conversion and 39% average energy savings per VM.Comment: 14 pages, conferenc
Ferromagnetic fluid as a model of social impact
The paper proposes a new model of spin dynamics which can be treated as a
model of sociological coupling between individuals. Our approach takes into
account two different human features: gregariousness and individuality. We will
show how they affect a psychological distance between individuals and how the
distance changes the opinion formation in a social group. Apart from its
sociological aplications the model displays the variety of other interesting
phenomena like self-organizing ferromagnetic state or a second order phase
transition and can be studied from different points of view, e.g. as a model of
ferromagnetic fluid, complex evolving network or multiplicative random process.Comment: 8 pages, 5 figure
Statistical Modeling of Solar Flare Activity from Empirical Time Series of Soft X-ray Solar Emission
A time series of soft X-ray emission observed on 1974-2007 years (GOES) is
analyzed. We show that in the periods of high solar activity 1977-1981,
1988-1992, 1999-2003 the energy statistics of soft X-ray solar flares for class
M and C is well described by a FARIMA time series with Pareto innovations. The
model is characterized by two effects. One of them is a long-range dependence
(long-term memory), and another corresponds to heavy-tailed distributions.
Their parameters are statistically stable enough during the periods. However,
when the solar activity tends to minimum, they change essentially. We discuss
possible causes of this evolution and suggest a statistical model for
predicting the flare energy statistics.Comment: 21 pages, 7 figure
Subordination model of anomalous diffusion leading to the two-power-law relaxation responses
We derive a general pattern of the nonexponential, two-power-law relaxation
from the compound subordination theory of random processes applied to anomalous
diffusion. The subordination approach is based on a coupling between the very
large jumps in physical and operational times. It allows one to govern a
scaling for small and large times independently. Here we obtain explicitly the
relaxation function, the kinetic equation and the susceptibility expression
applicable to the range of experimentally observed power-law exponents which
cannot be interpreted by means of the commonly known Havriliak-Negami fitting
function. We present a novel two-power relaxation law for this range in a
convenient frequency-domain form and show its relationship to the
Havriliak-Negami one.Comment: 5 pages; 3 figures; corrected versio
- âŠ