46 research outputs found

    Evaluation of effects caused by differentially spliced Ets-1 transcripts in fibroblasts

    Get PDF
    The transcription factor Ets-1 is known to be involved in a broad variety of cellular functions such as cell proliferation, migration, invasion, apoptosis and angiogenesis. In nearly all these reports, the full-length Ets-1 (p51) is commonly considered to be the active form and the role of the Ets-1?VII splice variant (p42) has not been addressed. Therefore, we studied the functional effects of p42 Ets-1 in comparison to p51 Ets-1 expression in a well-characterized mouse fibroblast cell line. Furthermore, the specific role of Ets-1 was evaluated using mouse fibroblasts with a reduced Ets-1 expression caused by RNAi and compared to fibroblasts with a binding inhibition of the whole ETS transcription factor family by stably overexpressing the ETS DNA binding domain as transdominant-negative mutant. Our results demonstrate that p42 Ets-1 has quite different functions and target genes compared to p51 Ets-1 (e.g. TIMP-4, MMP-3, MMP-9, MMP-13). In some cases (e.g. in cytokine expression) p42 Ets-1 is a functional transcription factor which acts in the same manner as a transdominant-negative approach

    Novel tempeh (fermented soyabean) isoflavones inhibit in vivo angiogenesis in the chicken chorioallantoic membrane assay

    Get PDF
    Anti-angiogenic strategies are emerging as an important tool for the treatment of cancer and inflammatory diseases. In the present investigation we isolated several isoflavones from a tempeh (fermented soyabean) extract. The isolated isoflavones were identified as 5,7,4′-trihydroxyisoflavone (genistein), 7,4′-dihydroxyisoflavone (daidzein), 6,7,4′-trihydroxyisoflavone (factor 2), 7,8,4′-trihydroxyisoflavone (7,8,4′-TriOH) and 5,7,3′,4′-tetrahydroxyisoflavone (orobol). The effects on angiogenesis of these isoflavones were evaluated in the chicken chorioallantoic membrane assay; their capacity to inhibit vascular endothelial growth factor-induced endothelial cell proliferation and expression of the Ets 1 transcription factor, known to be implicated in the regulation of new blood vessel formation, were also investigated. We found that all isoflavones inhibited angiogenesis, albeit with different potencies. Compared with negative controls, which slightly inhibited in vivo angiogenesis by 6·30 %, genistein reduced angiogensis by 75·09 %, followed by orobol (67·96 %), factor 2 (56·77 %), daidzein (48·98 %) and 7,8,4′-TriOH (24·42 %). These compounds also inhibited endothelial cell proliferation, with orobol causing the greatest inhibition at lower concentrations. The isoflavones also inhibited Ets 1 expression, providing some insight into the molecular mechanisms of their action. Furthermore, the chemical structure of the different isoflavones suggests a structure-activity relationship. Our present findings suggest that the new isoflavones might be added to the list of low molecular mass therapeutic agents for the inhibition of angiogenesi

    The imbalance between proliferation and apoptosis contributes to degeneration of aortic valves and bioprostheses

    Get PDF
    Background: The pathomechanisms underlying aortic valve degeneration are incompletely understood. Therefore, the aim of our work was to assess the quantitative changes of proliferation and apoptosis accompanied by cellular phenotype alternations and matrix secretionin aortic sclerotic and stenotic valves and degenerative bioprostheses, as well as to detect the expression pattern of the rapamycin receptor FKBP12 across these three valve types.Methods: Mild-to-moderate sclerotic and stenotic valves and degenerative bioprostheses from 30 patients (n = 10 per group) were collected at autopsy or by surgery. Ki67+, FKBP12+, alpha-actin+, HSP47+ and TUNEL+ apoptotic cells were analyzed by immunohistochemistry.Results: The main finding was the reduced proliferation and increased apoptosis in stenotic valves (ST) compared to the sclerotic ones (SC) (proliferation: ST: 20.8 ± 2.0% vs. SC: 30.1 ±2.2%, apoptosis: ST: 40.7 ± 5.0% vs. SC: 28.0 ± 5.1%, p < 0.05, respectively). Analogical alternations were found in degenerative bioprostheses (BP) (proliferation: 4.8 ± 2.3%; apoptosis: 13.1 ± 6.8%). Corresponding changes were observed in the valve cellularity (ST: 893 ± 168, SC: 1034 ± 284, BP: 385 ± 179 cells/mm2, p < 0.05, respectively). The FKBP12 signaling was reduced in diseased valves and bioprostheses (ST: 28.1 ± 3.6%, SC: 42.2 ± 3.8%, BP: 5.8 ± 1.9%, p < 0.05, respectively). Further, the augmented alpha-actin expressionwas observed as the degenerative process progressed (ST: 30.3 ± 5.0%, SC: 22.6 ± 2.7%, BP:8.7 ± 4.0%, p < 0.05, respectively), followed by the upregulation of HSP47 (ST: 22.6 ± 2.8%,SC: 15.4 ± 2.1%, BP: 3.4 ± 1.0%, p < 0.05, respectively) and consecutive matrix accumulation.Conclusions: The imbalance between proliferation and apoptosis with cellular phenotypical shift and subsequent matrix secretion may contribute to aortic valve stenosis and bioprosthesis degeneration. The identification of FKBP12 expression may implicate potential therapeutic strategies

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma.</p> <p>Methods</p> <p>To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created.</p> <p>Results</p> <p>Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate <it>in vitro </it>whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF<sup>-/-</sup>/Ink4a<sup>+/- </sup>mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model.</p> <p>Conclusions</p> <p>The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue.</p
    corecore