655 research outputs found
Consistent histories, the quantum Zeno effect, and time of arrival
We present a decomposition of the general quantum mechanical evolution
operator, that corresponds to the path decomposition expansion, and interpret
its constituents in terms of the quantum Zeno effect (QZE). This decomposition
is applied to a finite dimensional example and to the case of a free particle
in the real line, where the possibility of boundary conditions more general
than those hitherto considered in the literature is shown. We reinterpret the
assignment of consistent probabilities to different regions of spacetime in
terms of the QZE. The comparison of the approach of consistent histories to the
problem of time of arrival with the solution provided by the probability
distribution of Kijowski shows the strength of the latter point of view
Point symmetries in the Hartree-Fock approach: Symmetry-breaking schemes
We analyze breaking of symmetries that belong to the double point group
D2h(TD) (three mutually perpendicular symmetry axes of the second order,
inversion, and time reversal). Subgroup structure of the D2h(TD) group
indicates that there can be as much as 28 physically different, broken-symmetry
mean-field schemes --- starting with solutions obeying all the symmetries of
the D2h(TD) group, through 26 generic schemes in which only a non-trivial
subgroup of D2h(TD) is conserved, down to solutions that break all of the
D2h(TD) symmetries. Choices of single-particle bases and the corresponding
structures of single-particle hermitian operators are discussed for several
subgroups of D2h(TD).Comment: 10 RevTeX pages, companion paper in nucl-th/991207
Geometry of entangled states
Geometric properties of the set of quantum entangled states are investigated.
We propose an explicit method to compute the dimension of local orbits for any
mixed state of the general K x M problem and characterize the set of
effectively different states (which cannot be related by local
transformations). Thus we generalize earlier results obtained for the simplest
2 x 2 system, which lead to a stratification of the 6D set of N=4 pure states.
We define the concept of absolutely separable states, for which all globally
equivalent states are separable.Comment: 16 latex pages, 4 figures in epsf, minor corrections, references
updated, to appear in Phys. Rev.
Defining critical thresholds for ensemble flood forecasting and warning
International audienceThe use of weather ensemble predictions in ensemble flood forecasting is an acknowledged procedure to include the uncertainty of meteorological forecasts in a probabilistic streamflow prediction system. Operational flood forecasters can thus get an overview of the probability of exceeding a critical discharge or water level, and decide on whether a flood warning should be issued or not. This process offers several challenges to forecasters: 1) how to define critical thresholds along all the rivers under survey? 2) How to link locally defined thresholds to simulated discharges, which result from models with specific spatial and temporal resolutions? 3) How to define the number of ensemble forecasts predicting the exceedance of critical thresholds necessary to launch a warning? This study focuses on this third challenge. We investigate the optimal number of ensemble members exceeding a critical discharge in order to issue a flood warning. The optimal probabilistic threshold is the one that minimizes the number of false alarms and misses, while it optimizes the number of flood events correctly forecasted. Furthermore, in our study, an optimal probabilistic threshold also maximizes flood preparedness: the gain in lead-time compared to a deterministic forecast. Data used to evaluate critical thresholds for ensemble flood forecasting come from a selection of 208 catchments in France, which covers a wide range of the hydroclimatic conditions (including catchment size) encountered in the country. The GRP hydrological forecasting model, a lumped soil-moisture-accounting type rainfall-runoff model, is used. The model is driven by the 10-day ECMWF deterministic and ensemble (51 members) precipitation forecasts for a period of 18 months. A trade-off between the number of hits, misses, false alarms and the gain in lead time is sought to find the optimal number of ensemble members exceeding the critical discharge. These optimal probability thresholds are further explored in order to search for correlations with catchment characteristics, forecast lead-time and discharge thresholds
Thermal phenomenology of hadrons from 200 AGeV S+S collisions
We develop a complete and consistent description for the hadron spectra from
heavy ion collisions in terms of a few collective variables, in particular
temperature, longitudinal and transverse flow. To achieve a meaningful
comparison with presently available data, we also include the resonance decays
into our picture. To disentangle the influences of transverse flow and
resonance decays in the -spectra, we analyse in detail the shape of the
-spectra.Comment: 31 pages, 13 figs in seperate uuencoded file, for LaTeX, epsf.sty and
dvips, TPR-93-16 and BNL-(no number yet
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
Influence of a classical homogeneous gravitational field on dissipative dynamics of the Jaynes-Cummings model with phase damping
In this paper, we study the dissipative dynamics of the Jaynes-Cummings model
with phase damping in the presence of a classical homogeneous gravitational
field. The model consists of a moving two-level atom simultaneously exposed to
the gravitational field and a single-mode traveling radiation field in the
presence of the phase damping. We present a quantum treatment of the internal
and external dynamics of the atom based on an alternative su(2) dynamical
algebraic structure. By making use of the super-operator technique, we obtain
the solution of the master equation for the density operator of the quantum
system, under the Markovian approximation. Assuming that initially the
radiation field is prepared in a Glauber coherent state and the two-level atom
is in the excited state, we investigate the influence of gravity on the
temporal evolution of collapses and revivals of the atomic population
inversion, atomic dipole squeezing, atomic momentum diffusion, photon counting
statistics and quadrature squeezing of the radiation field in the presence of
phase damping.Comment: 25 pages, 15 figure
Quantum Theory in Accelerated Frames of Reference
The observational basis of quantum theory in accelerated systems is studied.
The extension of Lorentz invariance to accelerated systems via the hypothesis
of locality is discussed and the limitations of this hypothesis are pointed
out. The nonlocal theory of accelerated observers is briefly described.
Moreover, the main observational aspects of Dirac's equation in noninertial
frames of reference are presented. The Galilean invariance of nonrelativistic
quantum mechanics and the mass superselection rule are examined in the light of
the invariance of physical laws under inhomogeneous Lorentz transformations.Comment: 25 pages, no figures, contribution to Springer Lecture Notes in
Physics (Proc. SR 2005, Potsdam, Germany, February 13 - 18, 2005
Rings and bars: unmasking secular evolution of galaxies
Secular evolution gradually shapes galaxies by internal processes, in
contrast to early cosmological evolution which is more rapid. An important
driver of secular evolution is the flow of gas from the disk into the central
regions, often under the influence of a bar. In this paper, we review several
new observational results on bars and nuclear rings in galaxies. They show that
these components are intimately linked to each other, and to the properties of
their host galaxy. We briefly discuss how upcoming observations, e.g., imaging
from the Spitzer Survey of Stellar Structure in Galaxies (S4G), will lead to
significant further advances in this area of research.Comment: Invited review at "Galaxies and their Masks", celebrating Ken
Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by
Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerari; minor
change
- …