43 research outputs found

    Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    Get PDF
    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes

    DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma

    Get PDF
    Background: It remains important to understand the biology and identify biomarkers for less studied cancers like testicular cancer. The purpose of this study was to determine the methylation frequency of several cancer-related genes in different histological types of testicular cancer and normal testis tissues (NT). Methods: DNA was isolated from 43 seminomas (SEs), 14 non-SEs (NSEs) and 23 NT, and was assayed for promoter methylation status of 15 genes by quantitative methylation-specific PCR. The methylation status was evaluated for an association with cancer, and between SEs and NSEs. Results: We found differential methylation pattern in SEs and NSEs. MGMT, VGF, ER-Î’ and FKBP4 were predominately methylated in NSEs compared with SEs. APC and hMLH1 are shown to be significantly more methylated in both subtypes in comparison with NT. When combining APC, hMLH1, ER-Î’ and FKBP4, it is possible to identify 86% of the NSEs, whereas only 7% of the SEs. Conclusions: Our results indicate that the methylation profile of cancer-associated genes in testicular cancer correlates with histological types and show cancer-specific pattern for certain genes. Further methylation analysis, in a larger cohort is needed to elucidate their role in testicular cancer development and potential for therapy, early detection and disease monitoring

    Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    Get PDF
    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters

    The crystal structure of dipeptidyl peptidase IV(CD26) reveals its functional regulation and enzymatic mechanism

    No full text
    The membrane-bound glycoprotein dipeptidyl peptidase IV (DP IV, CD26) is a unique multifunctional protein, acting as receptor, binding and proteolytic molecule. We have determined the sequence and 1.8 Å crystal structure of native DP IV prepared from porcine kidney. The crystal structure reveals a 2-2-2 symmetric tetrameric assembly which depends on the natively glycosylated β-propeller blade IV. The crystal structure indicates that tetramerization of DP IV is a key mechanism to regulate its interaction with other components. Each subunit comprises two structural domains, the N-terminal eight-bladed β-propeller with open Velcro topology and the C-terminal α/β-hydrolase domain. Analogy with the structurally related POP and tricorn protease suggests that substrates access the buried active site through the β-propeller tunnel while products leave the active site through a separate side exit. A dipeptide mimicking inhibitor complexed to the active site discloses key determinants for substrate recognition, including a Glu–Glu motif that distinguishes DP IV as an aminopeptidase and an oxyanion trap that binds and activates the P(2)-carbonyl oxygen necessary for efficient postproline cleavage. We discuss active and nonactive site-directed inhibition strategies of this pharmaceutical target protein

    Histopathological and molecular features of late relapses in non-seminomas

    No full text
    What's known on the subject? and What does the study add? Late relapses from germ cell tumors respond poorly to systemic chemotherapy. This feature has been partly attributed to their presumed derivation from mature teratomas giving rise to secondary non-germ cell histologies that have lost the original germ cell-like behaviour. Our series demonstrates the occurrence of non-germ cell malignancies in the absence of mature teratoma and points towards microsatellite instability and BRAF-mutations as the biologic basis for chemotherapy resistance in about half of the cases. OBJECTIVE center dot To describe the histopathological types of late relapses of germ cell tumours and to search for molecular markers associated with chemotherapy resistance. PATIENTS AND METHODS center dot Samples from 14 patients with late relapse from a non-seminoma were analysed. center dot Archival tumour tissue was gathered at intial diagnosis (n = 9) and at relapse (n = 9), mostly after previous treatment with chemotherapy. center dot In addition to routine histopathology, tumours were analysed for microsatellite instability and screened for mutations in the KRAS and BRAF genes. RESULTS center dot Relapse occurred after 76.5 months (median, range: 24-209 months). center dot The histology in relapse was pure yolk sac tumour in four of the nine patients analysed. center dot Three had a non-germ cell malignancy, one was a mixed non-seminoma and one was a pure mature teratoma. center dot One sample with non-germ cell malignancy originated from a yolk sac tumour without any evidence of teratoma. center dot In four of 12 evaluable patients, high-level microsatellite instability was observed. center dot All patients were KRAS wild-type but four showed a BRAF mutation at V600E. CONCLUSIONS center dot Many late relapses of germ cell tumours show pure yolk sac histology. center dot Non-germ cell malignancies do not necessarily develop from teratoma but can also arise from yolk sac histology. center dot The biology underlying chemotherapy resistance in late relapse could be related to a high incidence of microsatellite instability and BRAF mutation V600E, which were found in half of the patients

    Sonderaufgaben und mathematische Statistik

    No full text
    corecore