497 research outputs found

    Why's Everybody Always Pickin' on me? A New Look at Police/Minority Contact

    Get PDF
    Presently there are two explanations for disproportionate minority/police contact: racism and a belief that minorities commit most crimes and there is a need to focus on those communities. This article examines a third possibility that focuses on policing as a social service and minority use of social services in our society. The research examines policing as a social service and compares minority use of other social services with their use of police services. The research also looks at pulling of police into neighborhoods by measuring calls-for-service in various communities; it examines police resource allocation which, as the research indicates, is significantly based on these calls-for-service; and compares minority use of police services with minority utilization of other social services. The research supports the premise that disproportionate minority contact by police is a social phenomenon that is similar to minority over-utilization of other social services

    Toxoplasma gondii profilin does not stimulate an innate immune response through bovine or human TLR5

    Get PDF
    Toxoplasma gondii is responsible for one of the most prevalent infections in people. T. gondii profilin (TgPr) is a protein integral to parasite movement and cellular invasion. Murine TLR has been described to bind TgPr. Furthermore, more recently, human TLR5 has been described to recognise recombinant TgPr, as well as bacterial flagellin. In addition to infections in humans, T. gondii infects farm animals, but little information is available about its innate recognition. We aimed to investigate whether, similarly to their human orthologue, bovine and porcine TLR5 could also be stimulated by TgPr by using a combination of reporter cell lines expressing full length TLR5 from each species as well as primary cells. Although human and bovine TLR5-transfected cells responded to flagellin, no response was detected upon stimulation with profilin. Furthermore, TgPr failed to elicit IL-6 secretion in human peripheral blood mononuclear cells and CD14þ monocytes. In contrast, exposure of RAW cells, known to express TLR11 to TgPr, slightly increased the IL-6 response. Our data cast doubts on the possibility that profilin is a specific ligand for human TLR5 and bovine TLR5. This leaves the immunogenic properties of this potential target antigen uncharacterised outside of the murine system

    Altered Social Reward and Attention in Anorexia Nervosa

    Get PDF
    Dysfunctional social reward and social attention are present in a variety of neuropsychiatric disorders including autism, schizophrenia, and social anxiety. Here we show that similar social reward and attention dysfunction are present in anorexia nervosa (AN), a disorder defined by avoidance of food and extreme weight loss. We measured the implicit reward value of social stimuli for female participants with (n = 11) and without (n = 11) AN using an econometric choice task and also tracked gaze patterns during free viewing of images of female faces and bodies. As predicted, the reward value of viewing bodies varied inversely with observed body weight for women with anorexia but not control women, in contrast with their explicit ratings of attractiveness. Surprisingly, women with AN, unlike control women, did not find female faces rewarding and avoided looking at both the face and eyes – independent of observed body weight. These findings suggest comorbid dysfunction in the neural circuits mediating gustatory and social reward in anorexia nervosa

    TLR5 Risk-Associated Haplotype for Canine Inflammatory Bowel Disease Confers Hyper-Responsiveness to Flagellin

    Get PDF
    Single nucleotide polymorphisms (SNP) in the TLR5 gene have been associated with human inflammatory bowel disease (IBD) and animal models of this disease. We recently demonstrated a significant association between three non-synonymous SNPs in the canine TLR5 gene and IBD in German shepherd dogs (GSDs). However, so far, no direct link between these SNPs and a disturbance in TLR5 function was shown. In the present study, we determined the functional significance of the canine TLR5 SNPs by transfecting the identified risk-protective and risk-associated haplotype into human embryonic kidney cells (HEK) and assessed nuclear factor-kappa B (NF-κB) activation and CXCL8 production after stimulation. In addition, a whole blood assay for TLR5 activation was developed using blood derived from carrier dogs of either haplotype. There was a significant increase in NF-kB activity when cells transfected with the risk-associated TLR5 haplotype were stimulated with flagellin compared to the cells expressing the risk-protective TLR5 haplotype. This difference in NFkB activation correlated with CXCL8 expression in the supernatant measured by ELISA. Furthermore, whole blood taken from carrier dogs of the risk-associated TLR5 haplotype produced significantly more TNF after stimulation with flagellin compared to that taken from carriers of the risk-protective haplotype. Thus, we show for the first time a direct functional impact of the canine IBD risk-associated TLR5 haplotype, which results in hyper-responsiveness to flagellin compared to the IBD risk-protective TLR5 haplotype. Our data potentially suggest that similarly to human IBD and experimental models, TLR5 may also play a role in canine IBD. Blocking the hyper-responsive receptor found in susceptible dogs with IBD may alleviate the inappropriate inflammation seen in this disease

    Short communication:Pegbovigrastim treatment in vivo does not affect granulocyte ability to migrate to endometrial cells and kill bacteria in vitro in healthy cows

    Get PDF
    In periparturient dairy cows, immune suppression, resulting in decreased neutrophil numbers and function, leads to increased susceptibility to postpartum conditions such as mastitis, retained placenta, and metritis. Administration of polyethylene glycol-conjugated bovine granulocyte colony stimulating factor (pegbovigrastim, Imrestor; Elanco Animal Health, Greenfield, IN) 7 d before and within 24 h of calving, effectively improves granulocyte production and function in vivo as well as in milk. A recently developed coculture assay was adapted for use with endometrial epithelial cells to assess the effects of pegbovigrastim application on directed granulocyte migration and bactericidal activity in vitro on a per-cell basis in endometrial cell cultures. Granulocytes from treated and untreated periparturient cows (6 and 5 per group, respectively) were evaluated for their ability to migrate to and kill bacteria after treatment, in context of the infected endometrium. We hypothesized that in addition to increasing the absolute concentration of circulating neutrophil granulocytes, pegbovigrastim treatment in vivo alters the ability of granulocytes to migrate to endometrial cells in vitro. The results clearly show a marked increase in the total concentration of granulocytes and monocytes between the 2 treatment groups as early as 2 d after the first injection, and this increased between the samples taken 2 d after calving. No migratory or killing differences were identified between granulocytes of both groups, suggesting that pegbovigrastim-induced granulocytes were as effective as non-induced cells. This may also be due to the absence of negative energy balance in the study animals and leads us to conclude that the positive effects seen in vivo are most likely based on the larger number of granulocytes present rather than a direct effect of pegbovigrastim treatment on the functionality of cells for the parameters tested in this study

    The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

    Get PDF
    In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions

    Resolution of Biphasic Binding of the Opioid Antagonist Naltrexone in Brain Membranes

    Full text link
    In synaptosomal membranes from rat brain cortex, in the presence of 150 m M NaC1, the opioid antagonist [ 3 H] naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 n M , respectively. Guanosine-5′-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [ 3 H] naltrexone. As shown by nonlinear least-squares analysis, the Μ opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [ 3 H] naltrexone binding, whereas the Δ-selective ligands [D- Pen 2 , D-Pen 5 ] enkephalin, ICI 174, 864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66340/1/j.1471-4159.1991.tb08288.x.pd

    Sodium Regulation of Agonist Binding at Opioid Receptors. I. Effects of Sodium Replacement on Binding at and #{244}-Type Receptors in 731 5c and NG1 08-15 Cells and Cell Membranes

    Get PDF
    SUMMARY The effects of varying the sodium concentration (at constant ionic strength) on oploid binding at -and #{244}-opioid receptors in 731 5c and NG1 08-1 5 cells has been examined

    Organic Cation Transporter 3 and the Dopamine Transporter Differentially Regulate Catecholamine Uptake in the Basolateral Amygdala and Nucleus Accumbens

    Get PDF
    Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT‐dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4‐fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions
    corecore