10 research outputs found
Epigenetics and chromosome segregation in human pre-implantation embryos
Abstract
Chapter 1
Currently, the average pregnancy rate per embryo transfer after in vitro fertilization (IVF) is around 32%. In order to achieve better results in the future, we need to gain knowledge on all aspects of the treatment, including pre-implantation embryo development.
In this thesis, we describe the research we performed into epigenetics and chromosome segregation in human pre-implantation embryos derived from IVF. The term ‘epigenetics’ refers to heritable marks on the genome, such as DNA methylation and histone modifications. These marks are essential for chromosome structure, chromosome segregation and gene expression. Chromosome segregation is the process in which duplicated chromosomes are equally separated over two cells during cell division.
Chromosomal abnormalities are detected at high frequencies in human pre-implantation embryos. This suggests that mechanisms regulating chromosome segregation are less functional during the first cell divisions of an embryo. Next to that, epigenetic marks, which are also important for correct chromosome segregation, are different in oocytes and spermatozoa and need to be re-established in early embryos. The research described in this thesis aimed to investigate both the mechanisms regulation chromosome segregation and the re-establishmen
Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications
The different configurations of maternal and paternal chromatin, acquired during oogenesis and spermatogenesis, have to be rearranged after fertilization to form a functional embryonic genome. In the paternal genome, nucleosomal chromatin domains are re-established after the protamine-to-histone exchange. We investigated the formation of constitutive heterochromatin (cHC) in human preimplantation embryos. Our results show that histones carrying canonical cHC modifications are retained in cHC regions of sperm chromatin. These modified histones are transmitted to the oocyte and contribute to the formation of paternal embryonic cHC. Subsequently, the modifications are recognized by the H3K9/HP1 pathway maternal chromatin modifiers and propagated over the embryonic cleavage divisions. These results are in contrast to what has been described for mouse embryos, in which paternal cHC lacks canonical modifications and is initially established by Polycomb group proteins. Our results show intergenerational epigenetic inheritance of the cHC structure in human embryos
Round Spermatid Injection Rescues Female Lethality of a Paternally Inherited Xist Deletion in Mouse
In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing.
Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo d
A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development
BACKGROUND: Human embryos generated by IVF demonstrate a high incidence of chromosomal segregation errors during the cleavage divisions. To analyse underlying molecular mechanisms, we investigated the behaviour of the chromosomal passenger complex (CPC) in human oocytes and embryos. This important mitotic regulatory complex comprises the inner centromere protein (INCENP), survivin, borealin and Aurora B, or the meiotic kinase Aurora C. METHODS: We analysed mRNA expression by quantitative RT-PCR of all CPC members in human oocytes, tripronuclear (3PN) zygotes, 2-cell and 4-cell embryos developed from 3PN zygotes, plus good-quality cryopreserved 8-cell, morula and blastocyst stage embryos. Protein expression and localization of CPC members were investigated by immunofluorescence in oocytes and embryos arrested at prometaphase. Histone H3S10 phosphorylation was investigated as an indicator of a functional CPC. RESULTS: INCENP, survivin and borealin were detected at the inner centromere of prometaphase chromosomes in all stages investigated. Whereas Aurora B and C are both present in oocytes, Aurora C becomes the most prominent kinase in the CPC during the first three embryonic cell cycles. Moreover, Aurora C mRNA was up-regulated with Aurora B after activation of the embryonic genome and both proteins were detected in early Day 4 embryos. Subsequently, only Aurora B was detected in blastocysts. CONCLUSIONS: In contrast to somatic cells, our results point to a specific role for Aurora C in the CPC during human preimplantation embryo development. Although, the presence of Aurora C in itself may not explain the high chromosome segregation error rate, the data presented here provide novel information regarding possible mechanisms
Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking
Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADS). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer