88 research outputs found
Recommended from our members
Cytogenetic and Array-CGH Characterization of a Complex de novo Rearrangement Involving Duplication and Deletion of 9p and Clinical Findings in a 4-Month-Old Female
Approximately 15 patients with partial trisomy 9p involving de novo duplications have been previously described. Here, we present clinical, cytogenetic, FISH and aCGH findings in a patient with a de novo complex rearrangement in the short arm of chromosome 9 involving an inverted duplication at 9p24âp21.3 and a deletion at 9pterâp24.2. FISH probes generated from BACs selected from the UCSC genome browser were utilized to verify this rearrangement. It is likely that some previously described duplications of 9p may also be products of complex chromosomal aberrations. This report in which FISH and aCGH were used to more comprehensively characterize the genomic rearrangement in a patient with clinical manifestations of 9p duplication syndrome underscores the importance of further characterizing cytogenetically detected rearrangements
Over-representation of specific regions of chromosome 22 in cells from human glioma correlate with resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea
BACKGROUND: Glioblastoma multiforme is the most malignant form of brain tumor. Despite treatment including surgical resection, adjuvant chemotherapy, and radiation, these tumors typically recur. The recurrent tumor is often resistant to further therapy with the same agent, suggesting that the surviving cells that repopulate the tumor mass have an intrinsic genetic advantage. We previously demonstrated that cells selected for resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) are near-diploid, with over-representation of part or all of chromosomes 7 and 22. While cells from untreated gliomas often have over-representation of chromosome 7, chromosome 22 is typically under-represented. METHODS: We have analyzed cells from primary and recurrent tumors from the same patient before and after in vitro selection for resistance to clinically relevant doses of BCNU. Karyotypic analyses were done to demonstrate the genetic makeup of these cells, and fluorescent in situ hybridization analyses have defined the region(s) of chromosome 22 retained in these BCNU-resistant cells. RESULTS: Karyotypic analyses demonstrated that cells selected for BCNU resistance were near-diploid with over-representation of chromosomes 7 and 22. In cells where whole copies of chromosome 22 were not identified, numerous fragments of this chromosome were retained and inserted into several marker and derivative chromosomes. Fluorescent in situ hybridization analyses using whole chromosome paints confirmed this finding. Additional FISH analysis using bacterial artificial chromosome probes spanning the length of chromosome 22 have allowed us to map the over-represented region to 22q12.3â13.32. CONCLUSION: Cells selected for BCNU resistance either in vivo or in vitro retain sequences mapped to chromosome 22. The specific over-representation of sequences mapped to 22q12.3â13.32 suggest the presence of a DNA sequence important to BCNU survival and/or resistance located in this region of chromosome 22
Recommended from our members
Regulation of in situ to invasive breast carcinoma transition
The transition of ductal carcinoma in situ (DCIS) to invasive carcinoma is a key event in breast tumor progression that is poorly understood. Comparative molecular analysis of tumor epithelial cells from in situ and invasive tumors has failed to identify consistent tumor stage-specific differences. However, the myoepithelial cell layer, present only in DCIS, is a key distinguishing and diagnostic feature. To determine the contribution of non-epithelial cells to tumor progression, we analyzed the role of myoepithelial cells and fibroblasts in the progression of in situ carcinomas using a xenograft model of human DCIS. Progression to invasion was promoted by fibroblasts, but inhibited by normal myoepithelial cells. The invasive tumor cells from these progressed lesions formed DCIS rather than invasive cancers when re-injected into naive mice. Molecular profiles of myoepithelial and epithelial cells isolated from primary normal and cancerous human breast tissue samples corroborated findings obtained in the xenograft model. These results provide the proof of principle that breast tumor progression could occur in the absence of additional genetic alterations and that tumor growth and progression could be controlled by replacement of normal myoepithelial inhibitory signals
Evidence for an ependymoma tumour suppressor gene in chromosome region 22pterâ22q11.2
Ependymomas are glial tumours of the brain and spinal cord. The most frequent genetic change in sporadic ependymoma is monosomy 22, suggesting the presence of an ependymoma tumour suppressor gene on that chromosome. Clustering of ependymomas has been reported to occur in some families. From an earlier study in a family in which four cousins developed an ependymoma, we concluded that an ependymoma-susceptibility gene, which is not the NF2 gene in 22q12, might be located on chromosome 22. To localize that gene, we performed a segregation analysis with chromosome 22 markers in this family. This analysis revealed that the susceptibility gene may be located proximal to marker D22S941 in 22pterâ22q11.2. Comparative genomic hybridization showed that monosomy 22 was the sole detectable genetic aberration in the tumour of one of the patients. Loss of heterozygosity studies in that tumour revealed that, in accordance to Knudsonâs two-hit theory of tumorigenesis, the lost chromosome 22 originated from the parent presumed to have contributed the wild-type allele of the susceptibility gene. Thus, our segregation and tumour studies collectively indicate that an ependymoma tumour suppressor gene may be present in region 22pterâ22q11.2. © 1999 Cancer Research Campaig
- âŠ