7 research outputs found

    Impact of Adjunctive Laser Irradiation on the Bacterial Load of Dental Root Canals: A Randomized Controlled Clinical Trial

    No full text
    Successful root canal treatment depends on the adequate elimination of pathogenic bacteria. This study evaluated the effectiveness of a novel 445-nm semiconductor laser in reducing bacteria after chemomechanical root canal treatment. Microbiological specimens from 57 patients were collected after emergency endodontic treatment, in the following sequence: 1, removal of the temporary filling material; 2, chemomechanical treatment; 3, rinsing with sodium hypochlorite (3%) along with one of three adjuvant protocols (n = 19 in each group). The adjuvant procedures were: (a) sodium hypochlorite rinsing alone (3%); (b) laser irradiation; (c) combined sodium hypochlorite rinsing and laser irradiation. The diode laser was set to 0.59 W in continuous-wave mode (CW) for 4 × 10 s. After the flooding of the root canal with saline, specimens were collected using paper points and analyzed microbiologically. Statistically significant reductions in the bacterial load were observed in all three groups (p < 0.05): 80.5% with sodium hypochlorite rinsing alone and 58.2% with laser therapy. Both results were lower than with the combination of sodium hypochlorite rinsing and 445-nm laser irradiation, at 92.7% (p < 0.05). Additional disinfection of the root canal can thus be achieved with 445-nm laser irradiation after conventional chemical disinfection with sodium hypochlorite solution

    The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature

    No full text
    The in vitro antimicrobial susceptibility of 29 strains of the major periodontal pathogen Porphyromonas gingivalis and three P. gulae (as an ancestor) to nine antibiotics (amoxicillin, amoxi-cillin/clavulanate, clindamycin, metronidazole, moxifloxacin, doxycycline, azithromycin, imipenem, and cefoxitin) was evaluated by E-testing of minimal inhibitory concentration (MIC) according to international standards. The results were compared with 16 international studies reporting MICs from 1993 until recently. In addition, 77 currently available P. gingivalis genomes were screened for antimicrobial resistance genes. E-testing revealed a 100% sensitivity of P. gingivalis and P. gulae to all antibiotics. This was independent of the isolation year (1970 until 2021) or region, including rural areas in Indonesia and Africa. Regarding studies worldwide (675 strains), several method varieties regarding medium, McFarland inoculation standards (0.5–2) and incubation time (48–168 h) were used for MIC-testing. Overall, no resistances have been reported for amoxicillin + clavulanate, cefoxitin, and imipenem. Few strains showed intermediate susceptibility or resistance to amoxicillin and metronidazole, with the latter needing both confirmation and attention. The only antibiotics which might fail in the treatment of P. gingivalis-associated mixed anaerobic infections are clindamycin, macrolides, and tetracyclines, corresponding to the resistance genes erm(B), erm(F), and tet(Q) detected in our study here, as well as fluoroquinolones. Periodical antibiotic susceptibility testing is necessary to determine the efficacy of antimicrobial agents and to optimize antibiotic stewardship

    Antimicrobial Impact of Different Air-Polishing Powders in a Subgingival Biofilm Model

    No full text
    Subgingival air-polishing devices (SAPD) can reduce bacterial biofilms and thus support periodontal healing. The authors of this study evaluated the effectiveness of the glycine-based and trehalose-based air-polishing powders in removing pathogenic bacteria in a subgingival biofilm model. We treated 56 subgingival pockets in porcine jaws with SAPD. Subgingival air polishing was performed in three groups of 13 pockets each: I, glycine-based powder; II, trehalose-based powder; and III, water alone. Another group (IV) served as untreated controls. Prior to air polishing, inoculated titanium bars were inserted into the pockets containing periopathogenic bacteria such as Porphyromonas gingivalis and Tannerella forsythia. Remaining bacteria were evaluated using real-time PCR. The numbers of remaining bacteria depended on the treatment procedure, with the lowest number of total bacteria in group I (median: 1.96 × 106 CFU; min: 1.46 × 105; max: 9.30 × 106). Both polishing powders in groups I and II (median: 1.36 × 107 CFU; min: 5.22 × 105; max: 7.50 × 107) showed a statistically significantly lower total bacterial load in comparison to both group IV (median: 2.02 × 108 CFU; min: 5.14 × 107; max: 4.51 × 108; p < 0.05) and group III (median: 4.58 × 107 CFU; min: 2.00 × 106; max: 3.06 × 108; p < 0.05). Both subgingival air-polishing powders investigated can reduce periopathogenic bacteria and thus support antimicrobial therapy approaches in periodontal treatment regimens
    corecore