136 research outputs found

    Spatial moving sound source with headphone

    Get PDF
    movement soundArchitecture & Allied Art

    AF17 Facilitates Dot1a Nuclear Export and Upregulates ENaC-Mediated Na+ Transport in Renal Collecting Duct Cells

    Get PDF
    Our previous work in 293T cells and AF17-/- mice suggests that AF17 upregulates expression and activity of the epithelial Na+ channel (ENaC), possibly by relieving Dot1a-AF9-mediated repression. However, whether and how AF17 directly regulates Dot1a cellular distribution and ENaC function in renal collecting duct cells remain unaddressed. Here, we report our findings in mouse cortical collecting duct M-1 cells that overexpression of AF17 led to preferential distribution of Dot1a in the cytoplasm. This effect could be blocked by nuclear export inhibitor leptomycin B. siRNA-mediated depletion of AF17 caused nuclear accumulation of Dot1a. AF17 overexpression elicited multiple effects that are reminiscent of aldosterone action. These effects include 1) increased mRNA and protein expression of the three ENaC subunits (α, β and γ) and serum- and glucocorticoid inducible kinase 1, as revealed by real-time RT-qPCR and immunoblotting analyses; 2) impaired Dot1a-AF9 interaction and H3 K79 methylation at the αENaC promoter without affecting AF9 binding to the promoter, as evidenced by chromatin immunoprecipitation; and 3) elevated ENaC-mediated Na+ transport, as analyzed by measurement of benzamil-sensitive intracellular [Na+] and equivalent short circuit current using single-cell fluorescence imaging and an epithelial Volt-ohmmeter, respectively. Knockdown of AF17 elicited opposite effects. However, combination of AF17 overexpression or depletion with aldosterone treatment did not cause an additive effect on mRNA expression of the ENaC subunits. Taken together, we conclude that AF17 promotes Dot1a nuclear export and upregulates basal, but not aldosterone-stimulated ENaC expression, leading to an increase in ENaC-mediated Na+ transport in renal collecting duct cells

    Flow-time minimization for timely data stream processing in UAV-aided mobile edge computing

    Get PDF
    Unmanned Aerial Vehicle (UAV) has gained increasing attentions by both academic and industrial communities, due to its flexible deployment and efficient line-of-sight communication. Recently, UAVs equipped with base stations have been envisioned as a key technology to provide 5G network services for mobile users. In this paper, we provide timely services on the data streams of mobile users in a UAV-aided Mobile Edge Computing (MEC) network, in which each UAV is equipped with a 5G small-cell base station for communication and data processing. Specifically, we first formulate a flow-time minimization problem by jointly caching services and offloading tasks of mobile users to the UAV-aided MEC with the aim to minimize the flow-time, where the flow-time of a user request is referred to the time duration from the request issuing time point to its completion point, subject to resource and energy capacity on each UAV. We then propose a spatial-temporal learning optimization framework. We also devise an online algorithm with a competitive ratio for the problem based upon the framework, by leveraging the round-robin scheduling and dual fitting techniques. Finally, we evaluate the performance of the proposed algorithms through experimental simulation. The simulation results demonstrated that the proposed algorithms outperform their comparison counterparts, by reducing the flow-time no less than 19% on average

    Determination of 4 Kinds of β-Agonists Residues in Braised Meat by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry

    Get PDF
    An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) method was developed for the determination of four β-agonists (terbutaline, clenbuterol, ractopamine, salbutamol) in braised meat. Samples were hydrolyzed by β-glucuronidase and cleaned up by an SLS solid phase extraction column. The separation was performed on a Thermo Hypersil Gold C18 column with a gradient elution of 0.1% formic acid water and acetonitrile as mobile phases, ESI+ was used for multiple response monitoring (MRM) and quantitative analysis by internal standard method. The linear relationship of the four β-agonists was good in the concentration range of 0.5 μg/L to 9.5 μg/L, and the correlation coefficient (r) was greater than 0.9988. The limit of detection (LOD) was 0.1 μg/kg, and the limit of quantitation (LOQ) was 0.3 μg/kg. The recoveries were 87.9%~113.7% and RSDs were 1.48%~9.32% at three spiked levels (1, 5 and 9 μg/kg). In a total of 162 batches of braised meat samples, one sample of braised pig’s trotter was found to contain 1.51 μg/kg of clenbuterol and 3.65 μg/kg of ractopamine. Additionally, another sample of braised lamb was found to contain 11.5 μg/kg of clenbuterol. The method is rapid and accurate, and can be used for qualitative and quantitative determination of four β-agonists (terbutaline, clenbuterol, ractopamine, salbutamol) in braised meat

    S100 Calcium Binding Protein A10, A Novel Oncogene, Promotes the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma

    Get PDF
    Hepatocarcinogenesis is a highly complicated process that is promoted by a series of oncogenes. Our study aims to identify novel oncogenes promoting hepatocellular carcinoma (HCC) by bioinformatic analysis and experimental validation. Here, we reported that S100 calcium binding protein A10 (S100A10) was screened out as a potential novel oncogene in HCC by integrated analysis of OEP000321 dataset and the Cancer Genome Atlas (TCGA)-Liver-Cancer data. Furthermore, S100A10 was highly expressed in HCC samples and observably associated with patients’ overall survival (OS). Overexpression of S100A10 in Hep3B and Huh-7 increased the cell proliferation, whereas downregulation of S100A10 in SK-Hep-1 and HepG2 cells reduced the cell viability to almost stop growing. In vivo tumor growth assays showed that S100A10-overexpressing Hep3B cells had a larger tumor size than control. Moreover, S100A10 overexpression promoted Hep3B cells migration and invasion, and S100A10 knockdown inhibited SK-Hep-1 cells migration and invasion, in vitro. In conclusion, it is demonstrated that S100A10 is a novel oncogene in HCC, indicating a possible novel therapeutic strategy of HCC

    HierFedML: aggregator placement and UE assignment for hierarchical federated learning in mobile edge computing

    Get PDF
    Federated learning (FL) is a distributed machine learning technique that enables model development on user equipments (UEs) locally, without violating their data privacy requirements. Conventional FL adopts a single parameter server to aggregate local models from UEs, and can suffer from efficiency and reliability issues – especially when multiple users issue concurrent FL requests . Hierarchical FL consisting of a master aggregator and multiple worker aggregators to collectively combine trained local models from UEs is emerging as a solution to efficient and reliable FL. The placement of worker aggregators and assignment of UEs to worker aggregators plays a vital role in minimizing the cost of implementing FL requests in a Mobile Edge Computing (MEC) network. Cost minimization associated with joint worker aggregator placement and UE assignment problem in an MEC network is investigated in this work. An optimization framework for FL and an approximation algorithm with an approximation ratio for a single FL request is proposed. Online worker aggregator placements and UE assignments for dynamic FL request admissions with uncertain neural network models, where FL requests arrive one by one without the knowledge of future arrivals, is also investigated by proposing an online learning algorithm with a bounded regret. The performance of the proposed algorithms is evaluated using both simulations and experiments in a real testbed with its hardware consisting of server edge servers and devices and software built upon an open source hierarchical FedML (HierFedML) environment. Simulation results show that the performance of the proposed algorithms outperform their benchmark counterparts, by reducing the implementation cost by at least 15% per FL request. Experimental results in the testbed demonstrate the performance gain using the proposed algorithms using real datasets for image identification and text recognition applications

    Iron induces two distinct Ca<sup>2+</sup> signalling cascades in astrocytes.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-05Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); Grant(s): 81871852Iron is the fundamental element for numerous physiological functions. Plasmalemmal divalent metal ion transporter 1 (DMT1) is responsible for cellular uptake of ferrous (Fe2+), whereas transferrin receptors (TFR) carry transferrin (TF)-bound ferric (Fe3+). In this study we performed detailed analysis of the action of Fe ions on cytoplasmic free calcium ion concentration ([Ca2+]i) in astrocytes. Administration of Fe2+ or Fe3+ in μM concentrations evoked [Ca2+]i in astrocytes in vitro and in vivo. Iron ions trigger increase in [Ca2+]i through two distinct molecular cascades. Uptake of Fe2+ by DMT1 inhibits astroglial Na+-K+-ATPase, which leads to elevation in cytoplasmic Na+ concentration, thus reversing Na+/Ca2+ exchanger and thereby generating Ca2+ influx. Uptake of Fe3+ by TF-TFR stimulates phospholipase C to produce inositol 1,4,5-trisphosphate (InsP3), thus triggering InsP3 receptor-mediated Ca2+ release from endoplasmic reticulum. In summary, these findings reveal the mechanisms of iron-induced astrocytic signalling operational in conditions of iron overload

    G9a Is Essential for EMT-Mediated Metastasis and Maintenance of Cancer Stem Cell-Like Characters in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC
    • …
    corecore