24 research outputs found

    Physical Transport Properties of Porous Rock with Computed Tomography

    Get PDF
    In this chapter, three-dimensional digital rock models can be constructed by the micron X-ray computed tomography (CT). Then, lattice gas automata was applied to simulate the flow of electrical current in the saturated digital rocks to reveal the non-Archie relation of resistivity index and water saturation (I-Sw). The flow of single-phase Newtonian fluid in pore space had been studied with LBM for calculating the absolute permeability. Moreover, we have developed a model based on digital rock to simulate thermal neutrons transporting for imaging the anisotropy of pore structure. The advantages of the model over traditional methods indicate that it can simultaneously consider both the separation of matrix and pore and the distribution of mineral components. The results of numerical simulation with Monte Carlo are in good agreement with the pore distribution from X-ray CT, which can further verify the validity of the new model. In contrast to the conventional conclusion, we find that the porosity calculated with neutron data can be affected by the anisotropy. Therefore, a new formula to relate the resolution of array detectors to the quality of imaging, had been proposed to analyze the critical resolution and to optimize the number of neutrons in each simulation

    A multi-agent-based approach for the impacts analysis of passenger flow on platforms in metro stations considering train operations

    Get PDF
    Impacts analysis of train operation on passenger flow in metro stations is an important and fundamental requirement to improve the operational efficiency and ensure passengers a high level of service. This study aims at large metro stations where thousands of passengers are moving, boarding or alighting and the complicated interactions among passengers and between passengers and other entities like stairways or trains take place all the time. A multi-agent-based approach is developed from the investigation of movement characteristics of passengers to meet the above requirement and deal with such interactions. The simulation scenarios considering the various conditions of train operations are performed in the case studies of a metro station in Beijing (China) to prove the feasibility of the proposed approach, which is useful to formulate and evaluate the operation schemes of trains

    G9a Is Essential for EMT-Mediated Metastasis and Maintenance of Cancer Stem Cell-Like Characters in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a particularly aggressive cancer with poor prognosis, largely due to lymph node metastasis and local recurrence. Emerging evidence suggests that epithelial-to-mesenchymal transition (EMT) is important for cancer metastasis, and correlated with increased cancer stem cells (CSCs) characteristics. However, the mechanisms underlying metastasis to lymph nodes in HNSCC is poorly defined. In this study, we show that E-cadherin repression correlates with cancer metastasis and poor prognosis in HNSCC. We found that G9a, a histone methyltransferase, interacts with Snail and mediates Snail-induced transcriptional repression of E-cadherin and EMT, through methylation of histone H3 lysine-9 (H3K9). Moreover, G9a is required for both lymph node-related metastasis and TGF-β-induced EMT in HNSCC cells since knockdown of G9a reversed EMT, inhibited cell migration and tumorsphere formation, and suppressed the expression of CSC markers. Our study demonstrates that the G9a protein is essential for the induction of EMT and CSC-like properties in HNSCC. Thus, targeting the G9a-Snail axis may represent a novel strategy for treatment of metastatic HNSCC

    Autocrine Epiregulin Activates EGFR Pathway for Lung Metastasis Via EMT in Salivary Adenoid Cystic Carcinoma

    Get PDF
    Salivary adenoid cystic carcinoma (SACC) is characterized by invasive local growth and a high incidence of lung metastasis. Patients with lung metastasis have a poor prognosis. Treatment of metastatic SACC has been unsuccessful, largely due to a lack of specific targets for the metastatic cells. In this study, we showed that epidermal growth factor receptors (EGFR) were constitutively activated in metastatic lung subtypes of SACC cells, and that this activation was induced by autocrine expression of epiregulin (EREG), a ligand of EGFR. Autocrine EREG expression was increased in metastatic SACC-LM cells compared to that in non-metastatic parental SACC cells. Importantly, EREG-neutralizing antibody, but not normal IgG, blocked the autocrine EREG-induced EGFR phosphorylation and the migration of SACC cells, suggesting that EREG-induced EGFR activation is essential for induction of cell migration and invasion by SACC cells. Moreover, EREG-activated EGFR stabilized Snail and Slug, which promoted EMT and metastatic features in SACC cells. Of note, targeting EGFR with inhibitors significantly suppressed both the motility of SACC cells in vitro and lung metastasis in vivo. Finally, elevated EREG expression showed a strong correlation with poor prognosis in head and neck cancer. Thus, targeting the EREG-EGFR-Snail/Slug axis represents a novel strategy for the treatment of metastatic SACC even no genetic EGFR mutation

    High-resolution adaptive beamforming for borehole acoustic reflection imaging

    No full text

    Combined motion control of hydraulic boom based on dynamic surface adaptive fuzzy sliding mode

    No full text
    The lifting mechanism on the transfer vehicle is a common electromechanical–hydraulic system. In order to overcome the non-linear and interference that exist in the hydraulic boom combined motion process, a dynamic surface adaptive fuzzy sliding mode control method is proposed. The Lyapunov function and virtual control base on inversion of the sliding mode control are designed, the dynamic surface control is used to calculate the derivative of the virtual control, and the adaptive control is applied to estimate the parameter. Furthermore, the fuzzy control is applied to fuzzification the switching item of the sliding surface. Verified by simulation, the designed sliding mode controller has high control accuracy and strong robustness and eliminates system chatter

    Supplemental material for Determining the Humidity-Dependent <i>Ortho</i>-to-<i>Para</i> Ratio of Water Vapor at Room Temperature Using Terahertz Spectroscopy

    No full text
    <p>Supplemental material for Determining the Humidity-Dependent <i>Ortho</i>-to-<i>Para</i> Ratio of Water Vapor at Room Temperature Using Terahertz Spectroscopy by Xinyang Miao, Jing Zhu, Kun Zhao, Honglei Zhan and Wenzheng Yue in Applied Spectroscopy</p
    corecore