9,208 research outputs found
Interactive Simplifier Tracing and Debugging in Isabelle
The Isabelle proof assistant comes equipped with a very powerful tactic for
term simplification. While tremendously useful, the results of simplifying a
term do not always match the user's expectation: sometimes, the resulting term
is not in the form the user expected, or the simplifier fails to apply a rule.
We describe a new, interactive tracing facility which offers insight into the
hierarchical structure of the simplification with user-defined filtering,
memoization and search. The new simplifier trace is integrated into the
Isabelle/jEdit Prover IDE.Comment: Conferences on Intelligent Computer Mathematics, 201
The Significance of Nasal Carriage of Staphylococcus Aureus and the Incidence of Postoperative Wound Infection
Staphylococcus aureus infections are associated with considerable morbidity and, in certain situations, mortality. The association between the nasal carriage of S. aureus and subsequent infection has been comprehensively established in a variety of clinical settings, in particular, patients undergoing haemodialysis and continuous ambulatory peritoneal dialysis (CAPD), and in patients undergoing surgery. Postoperative wound infections are associated with a high degree of morbidity and represent an important medical issue. Until recently, eradication of S. aureus nasal carriage by various topical and systemic agents had proved unsuccessful. Mupirocin is a novel topical antibiotic with excellent antibacterial activity against staphylococci. Recent studies have demonstrated that intranasal administration of mupirocin is effective in eradicating the nasal carriage of S. aureus and in reducing the incidence of S. aureus infections in haemodialysis and CAPD patients. It has been suggested that sufficient evidence now exists to test the hypothesis that eradication of the carrier state in surgical patients preoperatively may reduce the incidence of S. aureus postoperative wound infections
From LCF to Isabelle/HOL
Interactive theorem provers have developed dramatically over the past four
decades, from primitive beginnings to today's powerful systems. Here, we focus
on Isabelle/HOL and its distinctive strengths. They include automatic proof
search, borrowing techniques from the world of first order theorem proving, but
also the automatic search for counterexamples. They include a highly readable
structured language of proofs and a unique interactive development environment
for editing live proof documents. Everything rests on the foundation conceived
by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to
ensure soundness and eliminate the need to store proofs. Compared with the
research prototypes of the 1970s, Isabelle is a practical and versatile tool.
It is used by system designers, mathematicians and many others
Capturing Hiproofs in HOL Light
Hierarchical proof trees (hiproofs for short) add structure to ordinary proof
trees, by allowing portions of trees to be hierarchically nested. The
additional structure can be used to abstract away from details, or to label
particular portions to explain their purpose. In this paper we present two
complementary methods for capturing hiproofs in HOL Light, along with a tool to
produce web-based visualisations. The first method uses tactic recording, by
modifying tactics to record their arguments and construct a hierarchical tree;
this allows a tactic proof script to be modified. The second method uses proof
recording, which extends the HOL Light kernel to record hierachical proof trees
alongside theorems. This method is less invasive, but requires care to manage
the size of the recorded objects. We have implemented both methods, resulting
in two systems: Tactician and HipCam
Monte Carlo study of the critical properties of the three-dimensional 120-degree model
We report on large scale finite-temperature Monte Carlo simulations of the
classical or orbital-only model on the simple cubic lattice
in three dimensions with a focus towards its critical properties. This model
displays a continuous phase transition to an orbitally ordered phase. While the
correlation length exponent is close to the 3D XY value, the
exponent differs substantially from O(N) values. We also
introduce a discrete variant of the model, called -clock model,
which is found to display the same set of exponents. Further, an emergent U(1)
symmetry is found at the critical point , which persists for below
a crossover length scaling as , with an unusually small
.Comment: 13 pages, 6 figure
Emergence of chaotic scattering in ultracold Er and Dy
We show that for ultracold magnetic lanthanide atoms chaotic scattering
emerges due to a combination of anisotropic interaction potentials and Zeeman
coupling under an external magnetic field. This scattering is studied in a
collaborative experimental and theoretical effort for both dysprosium and
erbium. We present extensive atom-loss measurements of their dense magnetic
Feshbach resonance spectra, analyze their statistical properties, and compare
to predictions from a random-matrix-theory inspired model. Furthermore,
theoretical coupled-channels simulations of the anisotropic molecular
Hamiltonian at zero magnetic field show that weakly-bound, near threshold
diatomic levels form overlapping, uncoupled chaotic series that when combined
are randomly distributed. The Zeeman interaction shifts and couples these
levels, leading to a Feshbach spectrum of zero-energy bound states with
nearest-neighbor spacings that changes from randomly to chaotically distributed
for increasing magnetic field. Finally, we show that the extreme temperature
sensitivity of a small, but sizeable fraction of the resonances in the Dy and
Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our
threshold analysis for these resonances indicates a large collision-energy
dependence of the three-body recombination rate
- …