13,680 research outputs found
Non-Linear Transport through a Molecular Nanojunction
We present a simple model of electrical transport through a
metal-molecule-metal nanojunction that includes charging effects as well as
aspects of the electronic structure of the molecule. The interplay of a large
charging energy and an asymmetry of the metal-molecule coupling can lead to
various effects in non-linear electrical transport. In particular, strong
negative differential conductance is observed under certain conditions.Comment: 7 pages, 5 figures, accepted by Europhys. Let
A comparative study of higher order Bragg gratings: Coupled-mode theory versus mode expansion modeling
On Gallai's decomposition theorem for graphs
Zu dieser Veröffentlichung liegt kein Abstract vor
Online Drift Compensation for Chemical Sensors Using Estimation Theory
Sensor drift from slowly changing environmental conditions and other instabilities can greatly degrade a chemical sensor\u27s performance, resulting in poor identification and analyte quantification. In the present work, estimation theory (i.e., various forms of the Kalman filter) is used for online compensation of baseline drift in the response of chemical sensors. Two different cases, which depend on the knowledge of the characteristics of the sensor system, are studied. First, an unknown input is considered, which represents the practical case of analyte detection and quantification. Then, the more general case, in which the sensor parameters and the input are both unknown, is studied. The techniques are applied to simulated sensor data, for which the true baseline and response are known, and to actual liquid-phase SH-SAW sensor data measured during the detection of organophosphates. It is shown that the technique is capable of estimating the baseline signal and recovering the true sensor signal due only to the presence of the analyte. This is true even when the baseline drift changes rate or direction during the detection process or when the analyte is not completely flushed from the system
Распознавание изображений лиц на основе кластеризации
This article describes the use of clustering for face recognition image. Clustering was performed using a recurrent neural network used at two stages of the recognition process. The algorithm includes the recognition process itself perform clustering pixel brightness image, calculating image information close proximity and clustering measures to in order to obtain the cluster containing the original similar images
Characterization and Dynamics of Substituted Ruthenacyclobutanes Relevant to the Olefin Cross-Metathesis Reaction
The reaction of the phosphonium alkylidene [(H_(2)IMes)RuCl2═CHP(Cy)_3)]^(+) BF_(4)^− with propene, 1-butene, and 1-hexene at −45 °C affords various substituted, metathesis-active ruthenacycles. These metallacycles were found to equilibrate over extended reaction times in response to decreases in ethylene concentrations, which favored increased populations of α-monosubstituted and α,α′-disubstituted (both cis and trans) ruthenacycles. On an NMR time scale, rapid chemical exchange was found to preferentially occur between the β-hydrogens of the cis and trans stereoisomers prior to olefin exchange. Exchange on an NMR time scale was also observed between the α- and β-methylene groups of the monosubstituted ruthenacycle (H_(2)IMes)Cl_(2)Ru(CHRCH_(2)CH_(2)) (R = CH_3, CH_(2)CH_3, (CH_2)_)_(3)CH_3). EXSY NMR experiments at −87 °C were used to determine the activation energies for both of these exchange processes. In addition, new methods have been developed for the direct preparation of metathesis-active ruthenacyclobutanes via the protonolysis of dichloro(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(benzylidene) bis(pyridine)ruthenium(II) and its 3-bromopyridine analogue. Using either trifluoroacetic acid or silica-bound toluenesulfonic acid as the proton source, the ethylene-derived ruthenacyclobutane (H_(2)IMes)Cl_(2)Ru(CH_(2)CH_(2)CH_(2)) was observed in up to 98% yield via NMR at −40 °C. On the basis of these studies, mechanisms accounting for the positional and stereochemical exchange within ruthenacyclobutanes are proposed, as well as the implications of these dynamics toward olefin metathesis catalyst and reaction design are described
Recommended from our members
Sipping Fuel and Saving Lives: Increasing Fuel Economy without Sacrificing Safety
Demonstrates how new fuel-efficiency technologies make it possible, and advisable, to significantly increase the fuel economy of motor vehicles without compromising their safety
- …
