8,072 research outputs found

    Horace Bagley - Our Chief - Our Friend

    Get PDF

    Report Internal Affairs Committee

    Get PDF

    Low energy proton bidirectional anisotropies and their relation to transient interplanetary magnetic structures: ISEE-3 observations

    Get PDF
    It is known that the interplanetary medium in the period approaching solar maximum is characterized by an enhancement in the occurrence of transient solar wind streams and shocks and that such systems are often associated with looplike magnetic structures or clouds. There is observational evidence that bidirectional, field aligned flows of low energy particles could be a signature of such looplike structures, although detailed models for the magnetic field configuration and injection mechanisms do not exist at the current time. Preliminary results of a survey of low energy proton bidirectional anisotropies measured on ISEE-3 in the interplanetary medium between August 1978 and May 1982, together with magnetic field data from the same spacecraft are presented

    Evidence of columnar order in the fully frustrated transverse field Ising model on the square lattice

    Full text link
    Using extensive classical and quantum Monte Carlo simulations, we investigate the ground-state phase diagram of the fully frustrated transverse field Ising model on the square lattice. We show that pure columnar order develops in the low-field phase above a surprisingly large length scale, below which an effective U(1) symmetry is present. The same conclusion applies to the Quantum Dimer Model with purely kinetic energy, to which the model reduces in the zero-field limit, as well as to the stacked classical version of the model. By contrast, the 2D classical version of the model is shown to develop plaquette order. Semiclassical arguments show that the transition from plaquette to columnar order is a consequence of quantum fluctuations.Comment: 5 pages (including Supplemental Material), 5 figure

    Bar Association Appointments/Notice

    Get PDF

    Pre-selectable integer quantum conductance of electrochemically fabricated silver point contacts

    Get PDF
    The controlled fabrication of well-ordered atomic-scale metallic contacts is of great interest: it is expected that the experimentally observed high percentage of point contacts with a conductance at non-integer multiples of the conductance quantum G_0 = 2e^2/h in simple metals is correlated to defects resulting from the fabrication process. Here we demonstrate a combined electrochemical deposition and annealing method which allows the controlled fabrication of point contacts with pre-selectable integer quantum conductance. The resulting conductance measurements on silver point contacts are compared with tight-binding-like conductance calculations of modeled idealized junction geometries between two silver crystals with a predefined number of contact atoms
    • …
    corecore