13 research outputs found

    Sources of Klebsiella and Raoultella species on dairy farms: Be careful where you walk

    Get PDF
    Klebsiella spp. are a common cause of mastitis, milk loss, and culling on dairy farms. Control of Klebsiella mastitis is largely based on prevention of exposure of the udder to the pathogen. To identify critical control points for mastitis prevention, potential Klebsiella sources and transmission cycles in the farm environment were investigated, including oro-fecal transmission, transmission via the indoor environment, and transmission via the outdoor environment. A total of 305 samples was collected from 3 dairy farms in upstate New York in the summer of 2007, and included soil, feed crops, feed, water, rumen content, feces, bedding, and manure from alleyways and holding pens. Klebsiella spp. were detected in 100% of rumen samples, 89% of water samples, and approximately 64% of soil, feces, bedding, alleyway, and holding pen samples. Detection of Klebsiella spp. in feed crops and feed was less common. Genotypic identification of species using rpoB sequence data showed that Klebsiella pneumoniae was the most common species in rumen content, feces, and alleyways, whereas Klebsiella oxytoca, Klebsiella variicola, and Raoultella planticola were the most frequent species among isolates from soil and feed crops. Random amplified polymorphic DNA-based strain typing showed heterogeneity of Klebsiella spp. in rumen content and feces, with a median of 4 strains per 5 isolates. Observational and bacteriological data support the existence of an oro-fecal transmission cycle, which is primarily maintained through direct contact with fecal contamination or through ingestion of contaminated drinking water. Fecal shedding of Klebsiella spp. contributes to pathogen loads in the environment, including bedding, alleyways, and holding pens. Hygiene of alleyways and holding pens is an important component of Klebsiella control on dairy farms

    A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

    No full text
    A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology

    A review of Australia’s Mesozoic fishes

    No full text
    © 2020 Geological Society of Australia Inc., Australasian Palaeontologists. The Australian Mesozoic fish fauna is considered to be depauperate in comparison with fish faunas in the Northern Hemisphere. However, due to its geographical location as a potential radiation center in the Southern Hemisphere, Australia’s Mesozoic fish fauna is important for understanding fish radiations. Most of the modern fish groups originated during the Mesozoic, but the first records of a modern fish fauna (freshwater and marine) in Australia does not occur until the lower Paleogene. Here, we review all known fossil fish-bearing localities from the Mesozoic of Australia, to improve the understanding of the record. The apparent low Australian Mesozoic fish diversity is likely due to its understudied status of the constituent fossils rather than to a depauperate record. In addition, we review recent work with the aim of placing the Australian Mesozoic fish fauna in a global context. We review the taxonomy of Australian fossil fishes and conclude that the assignments of many actinopterygians need major revision within a modern phylogenetic context. The vast majority of chondrichthyans are yet to be formally described; to the contrary all of the known lungfish specimens have been described. This study considers the microscopic and fragmented remains of Mesozoic fish already found in Australia, allowing a more complete view of the diversity of the fishes that once inhabited this continent

    A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

    No full text
    A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.Diabetes mellitus: pathophysiological changes and therap

    Recent Advances in the Chemistry of Doubly Activated Cyclopropanes: Synthesis and Reactivity

    No full text

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    No full text
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector
    corecore