971 research outputs found

    Benchmarking Intensive Care Physiotherapy Staffing in Australian Tertiary Hospitals

    Get PDF
    Physiotherapy is an important component in the management of patients in the Intensive Care Unit (ICU). Existing guidelines on ICU physiotherapy staffing represent European settings and are not contemporary. With no specific recommendations in Australia, medical and nursing staffing guidelines reflected the need to have designated physiotherapy services available and accessible 24 hours a day in ICU. Therefore, this study aimed to pinpoint a guideline for ICU physiotherapy staff allocation by examining the current physiotherapy staff levels in ICU of Australian tertiary hospitals and comparing it with staff levels desired by senior physiotherapy leaders

    An Empirical Study on Patient Queuing after Medical Staff Supporting Disaster Areas in Northwest China

    Get PDF
    Recently, the new coronavirus has brought great disaster to human beings, so we have to take strong measures to suppress the large-scale outbreak of the disease. In this paper, by looking up the data of medical staff supporting Wuhan area in Northwest China, we build a queuing model of  to analyze the waiting time and staying time of patients. Secondly, due to the increase of patients, the burden of outpatient service is gradually increasing, which leads to the speed of epidemic spread greatly accelerated. Therefore,  model is constructed to analyze the relationship between patients and healers. The experimental results show that: (1) at the beginning of the data of more than 1000 medical staff, the patients were served for too long, which led to low efficiency. When they were supported, the efficiency was increasing with the increase of support, and the time was shortened, which was very helpful to relieve the medical pressure of outpatient. (2) With the increase of patients, at the same time, the number of healers is increasing, of course, there are also healthy people in it. At this time, we should focus on finding a suitable node, reducing the number of patients and increasing the number of healers, so as to effectively control the epidemic

    Generative Model for Models: Rapid DNN Customization for Diverse Tasks and Resource Constraints

    Full text link
    Unlike cloud-based deep learning models that are often large and uniform, edge-deployed models usually demand customization for domain-specific tasks and resource-limited environments. Such customization processes can be costly and time-consuming due to the diversity of edge scenarios and the training load for each scenario. Although various approaches have been proposed for rapid resource-oriented customization and task-oriented customization respectively, achieving both of them at the same time is challenging. Drawing inspiration from the generative AI and the modular composability of neural networks, we introduce NN-Factory, an one-for-all framework to generate customized lightweight models for diverse edge scenarios. The key idea is to use a generative model to directly produce the customized models, instead of training them. The main components of NN-Factory include a modular supernet with pretrained modules that can be conditionally activated to accomplish different tasks and a generative module assembler that manipulate the modules according to task and sparsity requirements. Given an edge scenario, NN-Factory can efficiently customize a compact model specialized in the edge task while satisfying the edge resource constraints by searching for the optimal strategy to assemble the modules. Based on experiments on image classification and object detection tasks with different edge devices, NN-Factory is able to generate high-quality task- and resource-specific models within few seconds, faster than conventional model customization approaches by orders of magnitude

    Electronic specific heat and low energy quasiparticle excitations in superconducting state of La2−xSrxCuO4La_{2-x}Sr_xCuO_4 single crystals

    Full text link
    Low temperature specific heat has been measured and extensively analyzed on a series of La2−xSrxCuO4La_{2-x}Sr_xCuO_4 single crystals from underdoped to overdoped regime. From these data the quasiparticle density of states (DOS) in the mixed state is derived and compared to the predicted scaling law Cvol/TH=f(T/H)C_{vol}/T\sqrt{H}=f(T/\sqrt{H}) of d-wave superconductivity. It is found that the scaling law can be nicely followed by the optimally doped sample (x=0.15) in quite wide region of (T/H≤8K/TT/\sqrt{H} \leq 8 K /\sqrt{T}). However, the region for this scaling becomes smaller and smaller towards more underdoped region: a clear trend can be seen for samples from x=0.15 to 0.069. Therefore, generally speaking, the scaling quality becomes worse on the underdoped samples in terms of scalable region of T/HT/\sqrt{H}. This feature in the underdoped region is explained as due to the low energy excitations from a second order (for example, anti-ferromagnetic correlation, d-density wave, spin density wave or charge density wave order) that may co-exist or compete with superconductivity. Surprisingly, deviations from the d-wave scaling law have also been found for the overdoped sample (x=0.22). While the scaling law is reconciled for the overdoped sample when the core size effect is taken into account. An important discovery of present work is that the zero-temperature data follow the Volovik's relation Δγ(T=0)=AH\Delta \gamma(T=0)=A\sqrt{H} quite well for all samples investigated here although the applicability of the d-wave scaling law to the data at finite temperatures varies with doped hole concentration. Finally we present the doping dependence of some parameters, such as, the residual linear term γ0\gamma_0, the α\alpha value, etc. ...Comment: 15 pages, 24 figure

    A Data-driven dE/dx Simulation with Normalizing Flow

    Full text link
    In high-energy physics, precise measurements rely on highly reliable detector simulations. Traditionally, these simulations involve incorporating experiment data to model detector responses and fine-tuning them. However, due to the complexity of the experiment data, tuning the simulation can be challenging. One crucial aspect for charged particle identification is the measurement of energy deposition per unit length (referred to as dE/dx). This paper proposes a data-driven dE/dx simulation method using the Normalizing Flow technique, which can learn the dE/dx distribution directly from experiment data. By employing this method, not only can the need for manual tuning of the dE/dx simulation be eliminated, but also high-precision simulation can be achieved

    The Impact of Alcohol Restriction on Hospital and Emergency Department Service Utilizations in Two Remote Towns in the Kimberley Region of Western Australia

    Get PDF
    Background: In a remote region of Western Australia, Kimberley, residents have nearly twice the State average per capita consumption of alcohol, four and a half times the level of alcohol-related hospitalizations and nearly three times the level of alcohol-related deaths. This study aimed to evaluate the long term effects of alcohol sale restrictions on health service utilization in two remote towns in Kimberley.Methods: Sale of high strength packaged alcohol was restricted in Fitzroy Crossing and Halls Creek since October 2007 and May 2009, respectively. Alcohol-related Emergency Department (ED) attendances and hospitalizations utilized by local residents before and after the intervention between 2003 and 2013 was compared by using yearly rates (/1,000 person-years) and interrupted time series analysis with Autoregressive Integrated Moving Average (ARIMA) modeling. The Western Australia specific aetiological fractions (AAFs) were applied to hospital inpatient data for estimation of the proportion of hospital separations attributable to alcohol.Results: In Fitzroy Crossing, there was a significant reduction of over 40% on rates (/1,000 person-years) of alcohol-related acute hospitalizations (54.2 [95% CI: 53.8–54.7] vs. 31.7 [31.4–32.1]) and ED attendances (534.1[532.8–535.5] vs. 294.5 [293.5–295.4]). In Halls Creek, there was a significant reduction of over 50% on rates (/1,000 person-years) of alcohol- related acute hospitalizations (17.7 [17.6–17.8] vs. 8.0 [7.9–8.1]) and ED attendance (248.4 [247.9–248.9] vs. 111.1[110.8–111.5]). Domestic violence and injury related hospitalization rates were also reduced by over 20% in both towns.Conclusions: The total restriction of selling high strength alcohol through a community driven process has shown to be effective in reducing alcohol-related health service utilization in post-intervention period. Continue monitoring is required to address new emerging issues. Future research on health service utilization related to alcohol by using interrupted time series analysis incorporating ARIMA modeling and applying AAFs are recommended for evaluating alcohol-related interventions

    circFBXW7 attenuates malignant progression in lung adenocarcinoma by sponging miR-942-5p

    Get PDF
    Background: As a type of non-coding RNA, circular RNAs (circRNAs) are considered to be functional molecules associated with human cancers. An increasing number of circRNAs have been verified in malignant progression in a number of cancers. The circRNA, circFBXW7, has been proven to play an important role in tumor proliferation and metastasis. However, whether circFBXW7 influences progression in lung adenocarcinoma (LUAD) remains unclear. Methods: Quantitative real-time reverse transcriptase PCR (qRT-PCR) was used to verify circFBXW7 in LUAD cell lines and LUAD tissues. Kaplan-Meier analysis was then used to compare the disease-free survival (DFS) and overall survival (OS) of these LUAD patients. The biological function of circFBXW7 was examined by overexpression and knockdown of circFBXW7 using MTT assay, EdU assay, wound-healing assay, and Transwell in vitro assays. To explore the mechanism of the circFBXW7, RNA pull-down assay, dual luciferase reporter assay, and RNA immunoprecipitation (RIP) assay were employed to examine the interaction between circFBXW7 and miR-942-5p. Western blot was used to study the fundamental proteins associated with the epithelial-mesenchymal transition (EMT) pathway. In vivo studies with BALB/c nude mice subcutaneously injected with cells stably overexpressing circFBXW7 were performed to further validate the in vitro results. Results: circFBXW7 was downregulated in LUAD cell lines and tissues, and LUAD patients with lower levels had shorter DFS and OS. The in vitro study showed that circFBXW7 overexpression inhibited proliferation and migration of A549 and HCC2279 cell lines. These results were confirmed by circFBXW7 knockdown, which showed the reverse effect. The in vivo model showed that the circRNA levels influenced the tumor growth. Finally, we determined that circFBXW7 target miRNA-942-5p which regulates the EMT gene BARX2. The modulation of circFBXW7 levels produced significant changes in EMT genes in vitro and in vivo. Conclusions: Our findings showed that circFBXW7 inhibits proliferation and migration by controlling the miR-942-5p/BARX2 axis in LUAD cell lines and its levels correlates with patient survival suggesting that regulating circFBXW7 could have therapeutic value in treating LUAD patients

    Protective Effects of Magnesium Glycyrrhizinate on Methotrexate-Induced Hepatotoxicity and Intestinal Toxicity May Be by Reducing COX-2

    Get PDF
    Magnesium isoglycyrrhizinate (MgIG), which has been widely employed to treat chronic hepatitis, is synthesized from 18-β glycyrrhizic acid, a main component of traditional Chinese medicine Glycyrrhiza uralensis Fisch. Although the protective effects of MgIG on methotrexate (MTX)-induced liver toxicity have been well-documented, the underlying mechanism remains elusive. MTX was initially used to treat pediatric acute leukemia, and has been widely applied to psoriasis therapy. However, its clinical applications are limited due to hepatotoxicity and intestinal toxicity. Herein, prophylactic administration of MgIG (9 and 18 mg/kg/day) significantly reduced the levels of aspartate aminotransferase and alanine aminotransferase in the serum of rats receiving intravenous injection of MTX (20 mg/kg body weight). MgIG also attenuated MTX-induced hepatic fibrosis. Moreover, it better protected against MTX-induced hepatocyte apoptosis and decreased the serum level of malondialdehyde than reduced glutathione (80 mg/kg/day) did. Interestingly, MTX-induced cyclooxygenase-2 (COX-2) expression, intestinal permeability and inflammation were attenuated after MgIG administration. In addition, MgIG (9 and 18 mg/kg) reduced MTX-induced colocalization of zonula occludens-1 (ZO-1) and connexin 43 (Cx43) in intestinal villi. In conclusion, MgIG exerted beneficial effects on MTX-induced hepatotoxicity and intestinal damage, as a potentially eligible drug for alleviating the hepatic and intestinal side effects of MTX during chemotherapy

    A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies

    Get PDF
    Single-atom electrocatalysts (SAECs) have gained tremendous attention due to their unique active sites and strong metal–substrate interactions. However, the current synthesis of SAECs mostly relies on costly precursors and rigid synthetic conditions and often results in very low content of single-site metal atoms. Herein, we report an efficient synthesis method to prepare metal–nitrogen–carbon SAECs based on formamide condensation and carbonization, featuring a cost-effective general methodology for the mass production of SAECs with high loading of atomically dispersed metal sites. The products with metal inclusion were termed as formamide-converted metal–nitrogen–carbon (shortened as f-MNC) materials. Seven types of single-metallic f-MNC (Fe, Co, Ni, Mn, Zn, Mo and Ir), two bi-metallic (ZnFe and ZnCo) and one tri-metallic (ZnFeCo) SAECs were synthesized to demonstrate the generality of the methodology developed. Remarkably, these f-MNC SAECs can be coated onto various supports with an ultrathin layer as pyrolysis-free electrocatalysts, among which the carbon nanotube-supported f-FeNC and f-NiNC SAECs showed high performance for the O2 reduction reaction (ORR) and the CO2 reduction reaction (CO2RR), respectively. Furthermore, the pyrolysis products of supported f-MNC can still render isolated metallic sites with excellent activity, as exemplified by the bi-metallic f-FeCoNC SAEC, which exhibited outstanding ORR performance in both alkaline and acid electrolytes by delivering ∼70 and ∼20 mV higher half-wave potentials than that of commercial 20 wt% Pt/C, respectively. This work offers a feasible approach to design and manufacture SAECs with tuneable atomic metal components and high density of single-site metal loading, and thus may accelerate the deployment of SAECs for various energy technology applications
    • …
    corecore