215 research outputs found

    On Adaptive Extended Different Life Cycle of Product Design Strategy

    Get PDF
    AbstractThe article uses research ways of following the whole lifespan of product and enterprise's development course to research strategy of company's product design and development. It announces enterprises of different nature, enterprises at different developing stage will adopt different mode strategy. It also announces close causality between development course of company and central technology and product. The result indicated in different developing stages such as company development period, crisis predicament period, lasting steadies period, improving by payback period, issues steadies secondary period, declining go and live period, enterprise should pursue different mode product tactics of research and development such as shrinking strategy, consolidating strategy, innovation keeping forging ahead strategy. Enterprise should break regular management mode to introduce different research and development mode to promote enterprise's competitiveness effectively

    Effects of ozone addition on the kinetics and efficiencies of methane conversion at fuel-rich conditions

    Get PDF
    Compression–expansion processes have the potential of converting mechanical work to chemical energy at fuel-rich conditions, allowing for the storage of fluctuating renewable energies. In this work, the conversion of methane and natural gas (NG) is investigated for this purpose. A focus is on using ozone as a reaction promoter for the otherwise slow reaction. The kinetics of fuel-rich methane/NG oxidation with ozone addition is investigated experimentally and numerically. To this end, ignition delay times (IDTs) for CH4_4/O2_2/O3_3/Ar and NG/O2_2/O3_3/Ar mixtures are measured in a rapid compression machine (RCM). It is shown that a reaction mechanism obtained by simply combining a previously developed mechanism for methane conversion (PolyMech2.0) with an ozone sub-mechanism does not accurately predict IDTs. Sensitivity analyses identify reactions in the methane submechanism that become more important for ignition delay time when ozone is added in comparison to mixtures without O3_3. The rate coefficients of these reactions are modified within their uncertainty ranges to better match the experimentally obtained IDTs. The resulting kinetic model, named PolyMech 3.0, predicts the IDTs obtained in RCM-experiments well. Analysis reveals a two-fold promoting effect of ozone addition on methane/air ignition: Ozone causes a temperature rise by the reactions associated with its decomposition. Ozone also forms reactive products such as hydrogen and oxygen radicals, which can then promote reactions of the hydrocarbons. Quantitative analysis shows that the latter effect is more pronounced. Using PolyMech 3.0, parametric simulation studies for methane conversion in four-stroke engine cycles are carried out to explore the effects of ozone addition on chemical energy storage and efficiencies of engine-based polygeneration processes. Results show that with ozone addition, methane conversion can take place at high engine speeds, while without ozone, there is nearly zero conversion of fuel rich methane mixtures because of the low reactivity. Therefore, ozone addition allows for reasonable efficiencies across a wider range of operating conditions

    How to coadd images: II. Anti-aliasing and PSF deconvolution

    Full text link
    We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively reweighted least squares and divide-and-conquer algorithms. Our approach not only allows for the anti-aliasing of the images but also enables PSF deconvolution, resulting in enhanced restoration of extended sources, the highest PSNR, and reduced ringing artefacts. To test our method, we conducted numerical simulations that replicated observation runs of the CSST/VST telescope and compared our results to those obtained using previous algorithms. The simulation showed that our method outperforms previous approaches in several ways, such as restoring the profile of extended sources and minimizing ringing artefacts. Additionally, because our method relies on the inherent advantages of least squares fitting, it is more versatile and does not depend on the local uniformity hypothesis for the PSF. However, the new method consumes much more computation than the other approaches.Comment: 16 pages, 5 figures, 2 tables, accepted for publishing on RA

    Detection of elevated levels of PINK1 in plasma from patients with idiopathic Parkinson’s disease

    Get PDF
    BackgroundsNumerous lines of evidence support the intricate interplay between Parkinson’s disease (PD) and the PINK1-dependent mitophagy process. This study aimed to evaluate differences in plasma PINK1 levels among idiopathic PD, PD syndromes (PDs), and healthy controls.MethodsA total of 354 participants were included, consisting of 197 PD patients, 50 PDs patients, and 107 healthy controls were divided into two cohorts, namely the modeling cohort (cohort 1) and the validated cohort (cohort 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis was performed on PINK1 and α-synuclein oligomer (Asy-no). The utilization of the area under the curve (AUC) within the receiver-operating characteristic (ROC) curves served as a robust and comprehensive approach to evaluate and quantify the predictive efficacy of plasma biomarkers alone, as well as combined models, in distinguishing PD patients from controls.ResultsPINK1 and Asy-no were elevated in the plasma of PD and PDs patients compared to healthy controls. The AUCs of PINK1 (0.771) and Asy-no (0.787) were supposed to be potentially eligible plasma biomarkers differentiating PD from controls but could not differentiate PD from PDs. Notably, the PINK + Asy-no + Clinical RBD model showed the highest performance in the modeling cohort and was comparable with the PINK1 + Clinical RBD in the validation cohort. Moreover, there is no significant correlation between PINK1 and UPDRS, MMSE, HAMD, HAMA, RBDQ-HK, and ADL scores.ConclusionThese findings suggest that elevated PINK1 in plasma holds the potential to serve as a non-invasive tool for distinguishing PD patients from controls. Moreover, the outcomes of our investigation lend support to the plausibility of implementing a feasible blood test in future clinical translation

    Alleviation of DSS-induced colitis in mice by a new-isolated Lactobacillus acidophilus C4

    Get PDF
    IntroductionProbiotic is adjuvant therapy for traditional drug treatment of ulcerative colitis (UC). In the present study, Lactobacillus acidophilus C4 with high acid and bile salt resistance has been isolated and screened, and the beneficial effect of L. acidophilus C4 on Dextran Sulfate Sodium (DSS)-induced colitis in mice has been evaluated. Our data showed that oral administration of L. acidophilus C4 remarkably alleviated colitis symptoms in mice and minimized colon tissue damage.MethodsTo elucidate the underlying mechanism, we have investigated the levels of inflammatory cytokines and intestinal tight junction (TJ) related proteins (occludin and ZO-1) in colon tissue, as well as the intestinal microbiota and short-chain fatty acids (SCFAs) in feces.ResultsCompared to the DSS group, the inflammatory cytokines IL-1β, IL-6, and TNF-α in L. acidophilus C4 group were reduced, while the antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were found to be elevated. In addition, proteins linked to TJ were elevated after L. acidophilus C4 intervention. Further study revealed that L. acidophilus C4 reversed the decrease in intestinal microbiota diversity caused by colitis and promoted the levels of SCFAs.DiscussionThis study demonstrate that L. acidophilus C4 effectively alleviated DSS-induced colitis in mice by repairing the mucosal barrier and maintaining the intestinal microecological balance. L. acidophilus C4 could be of great potential for colitis therapy

    Perfluorocarbon nanodrug induced oxygen self-enriching sonodynamic therapy improves cancer immunotherapy after insufficient radiofrequency ablation

    Get PDF
    Residual lesions and undetectable metastasis after insufficient radiofrequency ablation (iRFA) are associated with earlier new metastases and poor survival in cancer patients, for induced aggressive tumor phenotype and immunosuppression. Programmed cell death protein 1(PD-1) blockade has been reported to enhance the radiofrequency ablation-elicited antitumor immunity, but its ability to eliminate incompletely ablated residual lesions has been questioned. Here, we report a combined treatment modality post iRFA based on integrating an oxygen self-enriching nanodrug PFH-Ce6 liposome@O2 nanodroplets (PCL@O2)-augmented noninvasive sonodynamic therapy (SDT) with PD-1 blockade. PCL@O2 containing Ce6 as the sonosensitizer and PFH as O2 reservoir, was synthesized as an augmented SDT nanoplatform and showed increased ROS generation to raise effective apoptosis of tumor cells, which also exposed more calreticulin to induce stronger immunogenic cell death (ICD). Combining with PD-1 blockade post iRFA, this optimized SDT induced a better anti-tumor response in MC38 tumor bearing mouse model, which not only arrested residual primary tumor progression, but also inhibited the growth of distant tumor, therefore prolonging the survival. Profiling of immune populations within the tumor draining lymph nodes and tumors further revealed that combination therapy effectively induced ICD, and promoted the maturation of dendritic cells, tumor infiltration of T cells, as well as activation of cytotoxic T lymphocytes. While iRFA alone could result in an increase of regulatory T cells (Tregs) in the residual tumors, SDT plus PD-1 blockade post iRFA reduced the number of Tregs in both primary and distant tumors. Moreover, the combined treatment could significantly initiate long-term immune memory, manifesting as elevated levels of CD8+ and CD4+ central memory cells. Therefore, this study establishes the preclinical proof of concept to apply oxygen self-enriching SDT to augment cancer immunotherapy after iRFA
    corecore