191 research outputs found
Recommended from our members
Flow Patterns at Stented Coronary Bifurcations Computational Fluid Dynamics Analysis
Background—The ideal bifurcation stenting technique is not established, and data on the hemodynamic characteristics at stented bifurcations are limited.
Methods and Results—We used computational fluid dynamics analysis to assess hemodynamic parameters known affect the risk of restenosis and thrombosis at coronary bifurcations after the use of various single- and double-stenting techniques. We assessed the distributions and surface integrals of the time averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (tr). Single main branch stenting without side branch balloon angioplasty or stenting provided the most favorable hemodynamic results (integrated values of TAWSS=4.13·10−4 N, OSI=7.52·10−6 m2, tr=5.57·10−4 m2/Pa) with bifurcational area subjected to OSI values >0.25, >0.35, and >0.45 calculated as 0.36 mm2, 0.04 mm2, and 0 mm2, respectively. Extended bifurcation areas subjected to these OSI values were seen after T-stenting: 0.61 mm2, 0.18 mm2, and 0.02 mm2, respectively. Among the considered double-stenting techniques, crush stenting (integrated values of TAWSS=1.18·10−4 N, OSI=7.75·10−6 m2, tr=6.16·10−4 m2/Pa) gave the most favorable results compared with T-stenting (TAWSS=0.78·10−4 N, OSI=10.40·10−6 m2, tr=6.87·10−4 m2/Pa) or the culotte technique (TAWSS=1.30· 10−4 N, OSI=9.87·10−6 m2, tr=8.78·10−4 m2/Pa).
Conclusions—In the studied models of computer simulations, stenting of the main branch with our without balloon angioplasty of the side branch offers hemodynamic advantages over double stenting. When double stenting is considered, the crush technique with the use of a thin-strut stent may result in improved immediate hemodynamics compared with culotte or T-stenting
Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle
Background Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. Methods A parametric model representing a left anterior descending—first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60 %. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55 %:45 %, 65 %:35 %, and 75 %:25 %), and the SB stenoses (40, 60, and 80 %), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. Results The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40 % SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60 % SB stenosis, flow split 55 %:45 %). When the SB stenosis was 80 %, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55 %:45 %). By describing the ΔPSB−QSB relationship using a quadratic curve for cases with 80 % SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (ΔP = 0.451*Q + 0.010*Q 2 and ΔP = 0.687*Q + 0.017*Q 2 for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80 % SB stenoses were present. A good correlation (R2 = 0.80) between the SB pressure drop and helicity intensity was also found. Conclusions Our analyses showed that, in bifurcation lesions with 60 % MB stenosis and 80 % SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the ΔPSB−QSB relationship being steeper). When the SB stenosis is mild (40 %) or moderate (60 %), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations
Spatial correlations between MRI-derived wall shear stress and vessel wall thickness in the carotid bifurcation
BACKGROUND: To explore the possibility of creating three-dimensional (3D) estimation models for patient-specific wall thickness (WT) maps using patient-specific and cohort-averaged WT, wall shear stress (WSS), and vessel diameter maps in asymptomatic atherosclerotic carotid bifurcations. METHODS: Twenty subjects (aged 75 ± 6 years [mean ± standard deviation], eight women) underwent a 1.5-T MRI examination. Non-gated 3D phase-contrast gradient-echo images and proton density-weighted echo-planar images were retrospectively assessed for WSS, diameter estimation, and WT measurements. Spearman's ρ and scatter plots were used to determine correlations between individual WT, WSS, and diameter maps. A bootstrapping technique was used to determine correlations between 3D cohort-averaged WT, WSS, and diameter maps. Linear regression between the cohort-averaged WT, WSS, and diameter maps was used to predict individual 3D WT. RESULTS: Spearman's ρ averaged over the subjects was - 0.24 ± 0.18 (p < 0.001) and 0.07 ± 0.28 (p = 0.413) for WT versus WSS and for WT versus diameter relations, respectively. Cohort-averaged ρ, averaged over 1000 bootstraps, was - 0.56 (95% confidence interval [- 0.74,- 0.38]) for WT versus WSS and 0.23 (95% confidence interval [- 0.06, 0.52]) for WT versus diameter. Scatter plots did not reveal relationships between individual WT and WSS or between WT and diameter data. Linear relationships between these parameters became apparent after averaging over the cohort. Spearman's ρ between the original and predicted WT maps was 0.21 ± 0.22 (p < 0.001). CONCLUSIONS: With a combination of bootstrapping and cohort-averaging methods, 3D WT maps can be predicted from the individual 3D WSS and diameter maps. The methodology may help to elucidate pathological processes involving WSS in carotid atherosclerosis
Haemodynamics and flow modification stents for peripheral arterial disease:a review
Endovascular stents are widely used for the treatment of peripheral arterial disease (PAD). However, the development of in-stent restenosis and downstream PAD progression remain a challenge. Stent revascularisation of PAD causes arterial trauma and introduces abnormal haemodynamics, which initiate complicated biological processes detrimental to the arterial wall. The interaction between stent struts and arterial cells in contact, and the blood flow field created in a stented region, are highly affected by stent design. Spiral flow is known as a normal physiologic characteristic of arterial circulation and is believed to prevent the development of flow disturbances. This secondary flow motion is lost in atheromatous disease and its re-introduction after endovascular treatment of PAD has been suggested as a method to induce stabilised and coherent haemodynamics. Stent designs able to generate spiral flow may support endothelial function and therefore increase patency rates. This review is focused on secondary flow phenomena in arteries and the development of flow modification stent technologies for the treatment of PAD
Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
BACKGROUND: The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. METHODS: In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. RESULTS: Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm(2 )along the pericardial luminal surface and 4.26 to 4.88 dynes/cm(2 )along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm(2 )observed throughout the stented region of a straight vessel implanted with an equivalent stent. CONCLUSION: The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis
Coronary computed tomography angiography investigation of the association between left main coronary artery bifurcation angle and risk factors of coronary artery disease
To explore the association between the left main coronary artery bifurcation angle and common atherosclerotic risk factors with regard to the development of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA). A retrospective review of 196 CCTA cases (129 males, 67 females, mean age 58 ± 10.5 years) was conducted. The bifurcation angle between the left anterior descending (LAD) and left circumflex (LCx) was measured on two-dimensional (2D) and three-dimensional (3D) reconstructed images and the type of plaque and degree of lumen stenosis was assessed to determine the disease severity. An association between bifurcation angle and patient risk factors [gender, body mass index (BMI), hypertension, cholesterol, diabetes, smoking and family history] of CAD was also assessed to demonstrate the relationship between these variables. The mean bifurcation angle between the LAD and LCx was 79.40° ± 22.97°, ranging from 35.5° to 178°. Gender and BMI were found to have significant associations with bifurcation angle. Males were at 2.07-fold greater risk of having a >80° bifurcation angle and developing CAD than females (P = 0.003), and patients with high BMI (>25 kg/m2) were 2.54-fold more likely to have a >80° bifurcation angle than patients with a normal BMI (P = 0.001) and thus were at greater risk of developing CAD. There is a direct relationship between the left main coronary artery bifurcation angle and patient gender and BMI. Measurement of the bifurcation angle should be incorporated into clinical practice to identify patients at high risk of developing CAD
Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
INTRODUCTION: The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that the vascular geometry created by an implanted stent causes local alterations in wall shear stress (WSS) that are associated with neointimal hyperplasia (NH). Foreshortening is a potential limitation of stent design that may affect stent performance and the rate of restenosis. The angle created between axially aligned stent struts and the principal direction of blood flow varies with the degree to which the stent foreshortens after implantation. METHODS: In the current investigation, we tested the hypothesis that stent foreshortening adversely influences the distribution of WSS and WSS gradients using time-dependent 3D CFD simulations of normal arteries based on canine coronary artery measurements of diameter and blood flow. WSS and WSS gradients were calculated using conventional techniques in ideal (16 mm) and progressively foreshortened (14 and 12 mm) stented computational vessels. RESULTS: Stent foreshortening increased the intrastrut area of the luminal surface exposed to low WSS and elevated spatial WSS gradients. Progressive degrees of stent foreshortening were also associated with strut misalignment relative to the direction of blood flow as indicated by analysis of near-wall velocity vectors. CONCLUSION: The current results suggest that foreshortening may predispose the stented vessel to a higher risk of neointimal hyperplasia
Interfering with Glycolysis Causes Sir2-Dependent Hyper-Recombination of Saccharomyces cerevisiae Plasmids
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH–encoding plasmid when the NAD+ metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux
- …