975 research outputs found
Heritability and expression of selected mixograph parameters in progeny of parents varying for mixing time
The mixograph performs certain rheological measurements during dough mixing and is a good predictor of wheat end-use quality. The aim of this study was to determine the expression and the heritability of mixing characteristics measured with Mixsmart® software and some quality characteristics in hard red spring wheat parents and their F1 progeny. Six parents varying in midline peak time and envelope peak time were crossed in a half diallel design. Parents and progeny were planted in three different environments. General combining ability (GCA) was a significant source of variation for the measured characteristics, and parents differed widely in terms of GCA effects. Midline-development time, -peak integral and -peak time showed high narrow sense heritability. Envelope peak-integral and -tail width displayed high narrow sense heritability for some, but not all locations. High GCA:SCA (specific combining ability) ratios indicated the prevalence of additive gene effects for midline-development time, -peak integral and -peak time, indicating that these characteristics are largely genetically determined, and that selection for them should lead to genetic gain
Instanton approach to the Langevin motion of a particle in a random potential
We develop an instanton approach to the non-equilibrium dynamics in
one-dimensional random environments. The long time behavior is controlled by
rare fluctuations of the disorder potential and, accordingly, by the tail of
the distribution function for the time a particle needs to propagate along the
system (the delay time). The proposed method allows us to find the tail of the
delay time distribution function and delay time moments, providing thus an
exact description of the long-time dynamics. We analyze arbitrary environments
covering different types of glassy dynamics: dynamics in a short-range random
field, creep, and Sinai's motion.Comment: 4 pages, 1 figur
Complex Action Support from Coincidences of Couplings
Our model \cite{ownmMPP}\cite{SIMPP} with complex action in a functional
integral formulation with path integrals extending over all times, past and
future, is reviewed. Several numerical relations between coupling constants are
presented as supporting evidence. The new evidence is that some more
unexplained coincidences are explained in our model:
1) The "scale problem" is solved because the Higgs field expectation value is
predicted to be very small compared to say some fundamental scale, that might
be the Planck scale.
2) The Higgs VEV need not, however, to be just zero, but rather is predicted
to be so that the running top-Yukawa coupling just is about to be unity at this
scale; in this way the (weak) scale easily becomes "exponentially small".
Instead of the top-Yukawa we should rather say the highest flavour Yukawa
coupling here.
These predictions are only achieved by allowing the principle of minimization
of the imaginary part of the action SI(history) to to a certain extent adjust
some coupling constants in addition to the initial conditions.
If Susy-partners are not found in LHC, it would strengthen the need for
"solution" of the hierarchy or rather scale problem along the lines of the
present article.Comment: only text. Some printing mistakes corrected and a couple of new
subsections inserted and abstract stylistically changed a bi
Noise storm continua: power estimates for electron acceleration
We use a generic stochastic acceleration formalism to examine the power
() input to nonthermal electrons that cause
noise storm continuum emission. The analytical approach includes the derivation
of the Green's function for a general second-order Fermi process, and its
application to obtain the particular solution for the nonthermal electron
distribution resulting from the acceleration of a Maxwellian source in the
corona. We compare with the power observed in noise
storm radiation. Using typical values for the various parameters, we find that
, yielding an efficiency
estimate in the range 10^{-10} \lsim \eta
\lsim 10^{-6} for this nonthermal acceleration/radiation process. These
results reflect the efficiency of the overall process, starting from electron
acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic
Cohort-based T-SSIM Visual Computing for Radiation Therapy Prediction and Exploration
We describe a visual computing approach to radiation therapy (RT) planning,
based on spatial similarity within a patient cohort. In radiotherapy for head
and neck cancer treatment, dosage to organs at risk surrounding a tumor is a
large cause of treatment toxicity. Along with the availability of patient
repositories, this situation has lead to clinician interest in understanding
and predicting RT outcomes based on previously treated similar patients. To
enable this type of analysis, we introduce a novel topology-based spatial
similarity measure, T-SSIM, and a predictive algorithm based on this similarity
measure. We couple the algorithm with a visual steering interface that
intertwines visual encodings for the spatial data and statistical results,
including a novel parallel-marker encoding that is spatially aware. We report
quantitative results on a cohort of 165 patients, as well as a qualitative
evaluation with domain experts in radiation oncology, data management,
biostatistics, and medical imaging, who are collaborating remotely.Comment: IEEE VIS (SciVis) 201
Symmetry properties of the metric energy-momentum tensor in classical field theories and gravity
We derive a generic identity which holds for the metric (i.e. variational)
energy-momentum tensor under any field transformation in any generally
covariant classical Lagrangian field theory. The identity determines the
conditions under which a symmetry of the Lagrangian is also a symmetry of the
energy-momentum tensor. It turns out that the stress tensor acquires the
symmetry if the Lagrangian has the symmetry in a generic curved spacetime. In
this sense a field theory in flat spacetime is not self-contained. When the
identity is applied to the gauge invariant spin-two field in Minkowski space,
we obtain an alternative and direct derivation of a known no-go theorem: a
linear gauge invariant spin-2 field, which is dynamically equivalent to
linearized General Relativity, cannot have a gauge invariant metric
energy-momentum tensor. This implies that attempts to define the notion of
gravitational energy density in terms of the metric energy--momentum tensor in
a field-theoretical formulation of gravity must fail.Comment: Revised version to match the published version in Class. Quantum Gra
First- and Second-Order Transitions between Quantum and Classical Regimes for the Escape Rate of a Spin System
We have found a novel feature of the bistable large-spin model described by
the Hamiltonian H = -DS_z^2 - H_xS_x.The crossover from thermal to quantum
regime for the escape rate can be either first (H_x<SD/2) or second
(SD/2<H_x<2SD) order, that is, sharp or smooth, depending on the strength of
the transverse field. This prediction can be tested experimentally in molecular
magnets like Mn_12Ac.Comment: 4 pages, 4 figure
Cosmological Production of Vector Bosons and Cosmic Microwave Background Radiation
The intensive cosmological creation of vector W, Z- bosons in the
cosmological model with the relative units is considered. Field theoretical
models are studied, which predict that the CMB radiation and the baryon matter
in the universe can be products of decay and annihilation processes of these
primordial bosons.Comment: 31 pages, 1 figur
Stochastic Cellular Automata Model for Stock Market Dynamics
In the present work we introduce a stochastic cellular automata model in
order to simulate the dynamics of the stock market. A direct percolation method
is used to create a hierarchy of clusters of active traders on a two
dimensional grid. Active traders are characterised by the decision to buy,
(+1), or sell, (-1), a stock at a certain discrete time step. The remaining
cells are inactive,(0). The trading dynamics is then determined by the
stochastic interaction between traders belonging to the same cluster. Most of
the stylized aspects of the financial market time series are reproduced by the
model.Comment: 17 pages and 7 figure
- …