200 research outputs found

    Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from ^(40)Ar/^(39)Ar and (U-Th)/He thermochronology

    Get PDF
    High topography in central Asia is perhaps the most fundamental expression of the Cenozoic Indo-Asian collision, yet an understanding of the timing and rates of development of the Tibetan Plateau remains elusive. Here we investigate the Cenozoic thermal histories of rocks along the eastern margin of the plateau adjacent to the Sichuan Basin in an effort to determine when the steep topographic escarpment that characterizes this margin developed. Temperature-time paths inferred from ^(40)Ar/^(39)Ar thermochronology of biotite, multiple diffusion domain modeling of alkali feldspar ^(40)Ar release spectra, and (U-Th)/He thermochronology of zircon and apatite imply that rocks at the present-day topographic front of the plateau underwent slow cooling (30°–50°C/m.y.) coincident with exhumation from inferred depths of ∼8–10 km, at denudation rates of 1–2 mm/yr. Samples from the interior of the plateau continued to cool relatively slowly during the same time period (∼3°C/m.y.), suggesting limited exhumation (1–2 km). However, these samples record a slight increase in cooling rate (from <1 to ∼3°C/m.y.) at some time during the middle Tertiary; the tectonic significance of this change remains uncertain. Regardless, late Cenozoic denudation in this region appears to have been markedly heterogeneous, with the highest rates of exhumation focused at the topographic front of the plateau margin. We infer that the onset of rapid cooling at the plateau margin reflects the erosional response to the development of regionally significant topographic gradients between the plateau and the stable Sichuan Basin and thus marks the onset of deformation related to the development of the Tibetan Plateau in this region. The present margin of the plateau adjacent to and north of the Sichuan Basin is apparently no older than the late Miocene or early Pliocene (∼5–12 Ma)

    Dpr Acts as a Molecular Switch, Inhibiting Wnt Signaling when Unphosphorylated, but Promoting Wnt Signaling when Phosphorylated by Casein Kinase Iδ/ε

    Get PDF
    The Wnt pathway is a key regulator of development and tumorigenesis. Dpr (Dact/Frodo) influences Wnt signaling in part through the interaction of its PDZ-B domain with Dsh's PDZ domain. Studies have shown that XDpr1a and its close relative, Frodo, are involved in multiple steps of the Wnt pathway in either inhibitory or activating roles. We found that XDpr1a is phosphorylated by casein kinase Iδ/ε (CKIδ/ε), an activator of Wnt signaling, in the presence of XDsh. Abrogating XDpr1a's ability to bind XDsh through mutation of XDpr1a's PDZ-B domain blocks CK1δ/ε's phosphorylation of XDpr1a. Conversely, XDsh possessing a mutation in its PDZ domain that is unable to bind XDpr1a does not promote XDpr1a phosphorylation. Phosphorylation of XDpr1a and XDsh by CKIδ/ε decreases their interaction. Moreover, the phosphorylation of XDpr1a by CKIδ/ε not only abrogates XDpr1a's promotion of β-catenin degradation but blocks β-catenin degradation. Our data suggest that XDpr1a phosphorylation by CKIδ/ε is dependent on the interaction of XDpr1a's PDZ-B domain with XDsh's PDZ domain, and that the phosphorylation state of XDpr1a determines whether it inhibits or activates Wnt signaling

    Dissecting Molecular Differences between Wnt Coreceptors LRP5 and LRP6

    Get PDF
    Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) serve as Wnt co-receptors for the canonical β-catenin pathway. While LRP6 is essential for embryogenesis, both LRP5 and LRP6 play critical roles for skeletal remodeling, osteoporosis pathogenesis and cancer formation, making LRP5 and LRP6 key therapeutic targets for cancer and disease treatment. LRP5 and LRP6 each contain in the cytoplasmic domain five conserved PPPSPxS motifs that are pivotal for signaling and serve collectively as phosphorylation-dependent docking sites for the scaffolding protein Axin. However existing data suggest that LRP6 is more effective than LRP5 in transducing the Wnt signal. To understand the molecular basis that accounts for the different signaling activity of LRP5 and LRP6, we generated a series of chimeric receptors via swapping LRP5 and LRP6 cytoplasmic domains, LRP5C and LRP6C, and studied their Wnt signaling activity using biochemical and functional assays. We demonstrate that LRP6C exhibits strong signaling activity while LRP5C is much less active in cells. Recombinant LRP5C and LRP6C upon in vitro phosphorylation exhibit similar Axin-binding capability, suggesting that LRP5 and LRP6 differ in vivo at a step prior to Axin-binding, likely at receiving phosphorylation. We identified between the two most carboxyl PPPSPxS motifs an intervening “gap4” region that appears to account for much of the difference between LRP5C and LRP6C, and showed that alterations in this region are sufficient to enhance LRP5 PPPSPxS phosphorylation and signaling to levels comparable to LRP6 in cells. In addition we provide evidence that binding of phosphorylated LRP5 or LRP6 to Axin is likely direct and does not require the GSK3 kinase as a bridging intermediate as has been proposed. Our studies therefore uncover a new and important molecular tuning mechanism for differential regulation of LRP5 and LRP6 phosphorylation and signaling activity

    Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling

    Get PDF
    Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway

    Direct Gene Transfer with IP-10 Mutant Ameliorates Mouse CVB3-Induced Myocarditis by Blunting Th1 Immune Responses

    Get PDF
    Background: Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated. Methodology/Principal Findings: The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4 + /CD8 + IFN-c + T cell percentages and reduced myocardial Th1 cytokine levels. Conclusion/Significance: Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activit

    Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation

    Get PDF
    Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling

    Interactions between Casein Kinase Iε (CKIε) and Two Substrates from Disparate Signaling Pathways Reveal Mechanisms for Substrate-Kinase Specificity

    Get PDF
    Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIepsilon and two substrates from different signaling pathways.CKIepsilon, but not CKIalpha, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIalpha's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIepsilon does not determine Dishevelled's and Period's preference for CKIepsilon nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIepsilon with its substrates. We demonstrate that autophosphorylation of CKIepsilon's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding.The biochemical interactions between CKIepsilon and Disheveled, Period, and its own C-terminus lead to models that explain CKIepsilon's specificity and regulation

    Sensitive Detection of p65 Homodimers Using Red-Shifted and Fluorescent Protein-Based FRET Couples

    Get PDF
    BACKGROUND: Fluorescence Resonance Energy Transfer (FRET) between the green fluorescent protein (GFP) variants CFP and YFP is widely used for the detection of protein-protein interactions. Nowadays, several monomeric red-shifted fluorescent proteins are available that potentially improve the efficiency of FRET. METHODOLOGY/PRINCIPAL FINDINGS: To allow side-by-side comparison of several fluorescent protein combinations for detection of FRET, yellow or orange fluorescent proteins were directly fused to red fluorescent proteins. FRET from yellow fluorescent proteins to red fluorescent proteins was detected by both FLIM and donor dequenching upon acceptor photobleaching, showing that mCherry and mStrawberry were more efficient acceptors than mRFP1. Circular permutated yellow fluorescent protein variants revealed that in the tandem constructs the orientation of the transition dipole moment influences the FRET efficiency. In addition, it was demonstrated that the orange fluorescent proteins mKO and mOrange are both suitable as donor for FRET studies. The most favorable orange-red FRET pair was mKO-mCherry, which was used to detect homodimerization of the NF-kappaB subunit p65 in single living cells, with a threefold higher lifetime contrast and a twofold higher FRET efficiency than for CFP-YFP. CONCLUSIONS/SIGNIFICANCE: The observed high FRET efficiency of red-shifted couples is in accordance with increased Förster radii of up to 64 A, being significantly higher than the Förster radius of the commonly used CFP-YFP pair. Thus, red-shifted FRET pairs are preferable for detecting protein-protein interactions by donor-based FRET methods in single living cells
    corecore