14 research outputs found

    LightBTSeg: A lightweight breast tumor segmentation model using ultrasound images via dual-path joint knowledge distillation

    Full text link
    The accurate segmentation of breast tumors is an important prerequisite for lesion detection, which has significant clinical value for breast tumor research. The mainstream deep learning-based methods have achieved a breakthrough. However, these high-performance segmentation methods are formidable to implement in clinical scenarios since they always embrace high computation complexity, massive parameters, slow inference speed, and huge memory consumption. To tackle this problem, we propose LightBTSeg, a dual-path joint knowledge distillation framework, for lightweight breast tumor segmentation. Concretely, we design a double-teacher model to represent the fine-grained feature of breast ultrasound according to different semantic feature realignments of benign and malignant breast tumors. Specifically, we leverage the bottleneck architecture to reconstruct the original Attention U-Net. It is regarded as a lightweight student model named Simplified U-Net. Then, the prior knowledge of benign and malignant categories is utilized to design the teacher network combined dual-path joint knowledge distillation, which distills the knowledge from cumbersome benign and malignant teachers to a lightweight student model. Extensive experiments conducted on breast ultrasound images (Dataset BUSI) and Breast Ultrasound Dataset B (Dataset B) datasets demonstrate that LightBTSeg outperforms various counterparts.Comment: 7 pages, 7 figures, conferenc

    Intrinsic Electronic Structure and Nodeless Superconducting Gap of YBa2Cu3O7āˆ’Ī“\mathrm{YBa_{2} Cu_{3} O_{7-\delta} } Observed by Spatially-Resolved Laser-Based Angle Resolved Photoemission Spectroscopy

    Full text link
    The spatially-resolved laser-based high resolution ARPES measurements have been performed on the optimally-doped YBa2Cu3O7āˆ’Ī“\mathrm{YBa_{2} Cu_{3} O_{7-\delta} } (Y123) superconductor. For the first time, we found the region from the cleaved surface that reveals clear bulk electronic properties. The intrinsic Fermi surface and band structures of Y123 are observed. The Fermi surface-dependent and momentum-dependent superconducting gap is determined which is nodeless and consistent with the d+is gap form

    Orbital-Dependent Electron Correlation in Double-Layer Nickelate La3Ni2O7

    Full text link
    The latest discovery of high temperature superconductivity near 80K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemmission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. A flat band is formed from the Ni-3dz2 orbitals around the zone corner which is 50meV below the Fermi level. Strong electron correlations are revealed which are orbital- and momentum-dependent. Our observations will provide key information to understand the origin of high temperature superconductivity in La3Ni2O7.Comment: 18 pages, 4 figure

    MethylRAD Sequencing Technology Reveals DNA Methylation Characteristics of <i>Apostichopus japonicus</i> of Different Ages

    No full text
    The A. japonicus industry has expanded significantly, but no research has focused on determining the age of A. japonicus during farming. Correctly estimating the age of A. japonicus can provide a decision-making basis for the breeding process and data for the protection of A. japonicus aquatic germplasm resources. DNA methylation levels in the body wall of Apostichopus japonicus at 4 months, 1 year, 2 years, and 3 years old were determined using MethylRAD-Seq, and differentially methylated genes were screened. A total of 441 and 966 differentially methylated genes were detected at the CCGG and CCWGG sites, respectively. Aspartate aminotransferase, succinate semialdehyde dehydrogenase, isocitrate dehydrogenase, the histone H2AX, heat shock protein Hsp90, aminopeptidase N, cell division cycle CDC6, Ras GTPase activating protein (RasGAP), slit guidance ligand slit1, integrin-linked kinase ILK, mechanistic target of rapamycin kinase Mtor, protein kinase A Pka, and autophagy-related 3 atg3 genes may play key roles in the growth and aging process of A. japonicus. This study provides valuable information regarding age-related genes for future research, and these candidate genes can be used to create an ā€œepigenetic clockā€

    Cytokine status and significant increase of IL-6 and sIL-6R in the aqueous humor of diabetic cataract patients revealed by quantitative multiplexed assays

    No full text
    Objective This study aimed to investigate inflammatory cytokine expression profiles in the aqueous humor (AH) of diabetic cataract (DC) patients. Methods A quantitative multiplexed antibody assay was performed to measure the expression levels of 40 inflammatory cytokines in AH samples from DC and age-related cataract (ARC) patients. Bioinformatics analysis was used to examine the functions of the cytokines. Enzyme-linked immunosorbent assays (ELISAs) and western blots were performed to verify the data. Results The multiplexed antibody assay revealed that the expression levels of IL-6, sIL-6R, IL-17A, IL-8, MCP-1, TNF-Ī², RANTES, TIMP-1, and TIMP-2 were higher in the AH of DC patients compared with ARC patients. However, IL-1ra and IL-1a expression levels were lower in the DC patient AH samples. Pathway analysis indicated that IL-6 and sIL-6R belong to the class I helical cytokine family, which is associated with many biological functions. ELISA and western blot results confirmed that IL-6R and IL-6 expression levels were significantly higher in DC patients compared with ARC patients. Conclusions Our results revealed the status of 40 inflammatory cytokines in the AH by quantitative multiplexed assays. Additionally, IL-6 and sIL-6R were expressed markedly higher in DC compared with ARC, which may play critical roles in DC pathophysiology

    Whole-genome resequencing reveals genetic differences and the genetic basis of parapodium number in Russian and Chinese Apostichopus japonicus

    No full text
    Abstract Background Apostichopus japonicus is an economically important species in the global aquaculture industry. Russian A. japonicus, mainly harvested in the Vladivostok region, exhibits significant phenotypic differentiation, including in many economically important traits, compared with Chinese A. japonicus owing to differences in their habitat. However, both the genetic basis for the phenotypic divergence and the population genetic structure of Russian and Chinese A. japonicus are unknown. Result In this study, 210 individuals from seven Russian and Chinese A. japonicus populations were sampled for whole-genome resequencing. The genetic structure analysis differentiated the Russian and Chinese A. japonicus into two groups. Population genetic analyses indicated that the Russian population showed a high degree of allelic linkage and had undergone stronger positive selection compared with the Chinese populations. Gene ontology terms enriched among candidate genes with group selection analysis were mainly involved in immunity, such as inflammatory response, antimicrobial peptides, humoral immunity, and apoptosis. Genome-wide association analysis yielded eight single-nucleotide polymorphism loci significantly associated with parapodium number, and these loci are located in regions with a high degree of genomic differentiation between the Chinese and Russia populations. These SNPs were associated with five genes. Gene expression validation revealed that three of these genes were significantly differentially expressed in individuals differing in parapodium number. AJAP08772 and AJAP08773 may directly affect parapodium production by promoting endothelial cell proliferation and metabolism, whereas AJAP07248 indirectly affects parapodium production by participating in immune responses. Conclusions This study, we performed population genetic structure and GWAS analysis on Chinese and Russian A. japonicus, and found three candidate genes related to the number of parapodium. The results provide an in-depth understanding of the differences in the genetic structure of A. japonicus populations in China and Russia, and provide important information for subsequent genetic analysis and breeding of this species

    Glycosylated Platinum(IV) Complexes as Substrates for Glucose Transporters (GLUTs) and Organic Cation Transporters (OCTs) Exhibited Cancer Targeting and Human Serum Albumin Binding Properties for Drug Delivery

    No full text
    Glycosylated platinumĀ­(IV) complexes were synthesized as substrates for GLUTs and OCTs for the first time, and the cytotoxicity and detailed mechanism were determined in vitro and in vivo. Galactoside PtĀ­(IV), glucoside PtĀ­(IV), and mannoside PtĀ­(IV) were highly cytotoxic and showed specific cancer-targeting properties in vitro and in vivo. Glycosylated platinumĀ­(IV) complexes <b>5</b>, <b>6</b>, <b>7</b>, and <b>8</b> (IC<sub>50</sub> 0.24ā€“3.97 Ī¼M) had better antitumor activity of nearly 166-fold higher than the positive controls cisplatin (<b>1a</b>), oxaliplatin (<b>3a</b>), and satraplatin (<b>5a</b>). The presence of a hexadecanoic chain allowed binding with human serum albumin (HSA) for drug delivery, which not only enhanced the stability of the inert platinumĀ­(IV) prodrugs but also decreased their reduction by reductants present in human whole blood. Their preferential accumulation in cancer cells compared to noncancerous cells (293T and 3T3 cells) suggested that they were potentially safe for clinical therapeutic use
    corecore