54 research outputs found

    Synthesis and antiproliferative activity of 7-azaindirubin-3′-oxime, a 7-aza isostere of the natural indirubin pharmacophore

    No full text
    The bis-indole alkaloid indirubin and its analogues bear a very interesting natural pharmacophore. They are recognized mainly as kinase inhibitors, but several other activities make them possible candidates for preclinical studies. Based on the previously reported activity of 7-bromoindirubin-3́-oxime and its derivatives, the synthesis of indirubins bearing a heterocyclic nitrogen atom at position 7 was carried out. Herein, we report the first synthesis of 7-azaindirubin-3́-oxime (12) as well as its antiproliferative activity against 57 cancer cell lines and its inhibitory activity against a series of kinases. 7-Azaindirubin (10) and its 3́-oxime derivative (12) showed reduced activity as kinase inhibitors in comparison with other known indirubin derivatives, but antiproliferative activity with a best GI50 value of 0.77 μM. © 2009 American Chemical Society and American Society of Pharmacognosy

    Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats

    Get PDF
    Therapeutic agents for memory enhancement in psychiatric disorders, such as schizophrenia, are urgently needed. The aim of this study is to characterize the preclinical profile of ITI-214, a potent inhibitor of phosphodiesterase 1 (PDE1). ITI-214 was assayed for inhibition of PDE1 versus other PDE enzyme families using recombinant human PDE enzymes and for off-target binding to 70 substrates (General SEP II diversity panel; Caliper Life Sciences). Effects of ITI-214 (0.1-10 mg/kg, po) on memory performance were assayed in rats using the novel object recognition (NOR) paradigm, with drug given at specified time points prior to or following exposure to objects in an open field. ITI-214 was evaluated for potential drug-drug interaction with risperidone in rats using conditioned avoidance response (CAR) and pharmacokinetic assessments. ITI-214 inhibited PDE1A (K (i) = 33 pmol) with > 1000-fold selectivity for the nearest other PDE family (PDE4D) and displayed minimal off-target binding interactions in a 70-substrate selectivity profile. By using specific timing of oral ITI-214 administration, it was demonstrated in the NOR that ITI-214 is able to enhance acquisition, consolidation, and retrieval memory processes. All memory effects were in the absence of effects on exploratory behavior. ITI-214 did not disrupt the risperidone pharmacokinetic profile or effects in CAR. ITI-214 improved the memory processes of acquisition, consolidation, and retrieval across a broad dose range (0.1-10 mg/kg, po) without disrupting the antipsychotic-like activity of a clinical antipsychotic medication, specifically risperidone. Clinical development of ITI-214 is currently in progress
    corecore