1,292 research outputs found
Impact of the isoprene photochemical cascade on tropical ozone
Tropical tropospheric ozone affects Earth's radiative forcing and the oxidative capacity of the atmosphere. Considerable work has been devoted to the study of the processes controlling its budget. Yet, large discrepancies between simulated and observed tropical tropospheric ozone remain. Here, we characterize some of the mechanisms by which the photochemistry of isoprene impacts the budget of tropical ozone. At the regional scale, we use forward sensitivity simulation to explore the sensitivity to the representation of isoprene nitrates. We find that isoprene nitrates can account for up to 70% of the local NO_x = NO+NO_2 sink. The resulting modulation of ozone can be well characterized by their net modulation of NO_x. We use adjoint sensitivity simulations to demonstrate that the oxidation of isoprene can affect ozone outside of continental regions through the transport of NO_x over near-shore regions (e.g., South Atlantic) and the oxidation of isoprene outside of the boundary layer far from its emissions regions. The latter mechanism is promoted by the simulated low boundary-layer oxidative conditions. In our simulation, ~20% of the isoprene is oxidized above the boundary layer in the tropics. Changes in the interplay between regional and global effect are discussed in light of the forecasted increase in anthropogenic emissions in tropical regions
The impact of anticipation in dynamical systems
Collective motion in biology is often modelled as a dynamical system, in
which individuals are represented as particles whose interactions are
determined by the current state of the system. Many animals, however, including
humans, have predictive capabilities, and presumably base their behavioural
decisions---at least partially---upon an anticipated state of their
environment. We explore a minimal version of this idea in the context of
particles that interact according to a pairwise potential. Anticipation enters
the picture by calculating the interparticle forces from linear extrapolations
of the particle positions some time into the future. Simulations show
that for intermediate values of , compared to a transient time scale
defined by the potential and the initial conditions, the particles form
rotating clusters in which the particles are arranged in a hexagonal pattern.
Analysis of the system shows that anticipation induces energy dissipation and
we show that the kinetic energy asymptotically decays as . Furthermore, we
show that the angular momentum is not necessarily conserved for , and
that asymmetries in the initial condition therefore can cause rotational
movement. These results suggest that anticipation could play an important role
in collective behaviour, since it induces pattern formation and stabilises the
dynamics of the system.Comment: Major revision compared to previous version. All figures replaced.
Only introduction and discussion remain intac
Kinetics of reactions of ground state nitrogen atoms (^4S_(3/2)) with NO and NO_2
The discharge flow technique has been used with resonance fluorescence detection of N atoms to study the fast radical-radical reaction of ground state nitrogen atoms (^4S_(3/2)) with NO and NO_2. The rate constants obtained are (in units of cm^3 molecule^(−1) s^(−1)) k_1 = (2.2±0.2) × 10^(−11) exp[(160±50)/T] in the temperature range 213 K ≤ T ≤ 369 K for N + NO → N_2 + O and k_2 = (5.8±0.5) × 10^(−12) exp [(220±50)/T] in the temperature range 223 K ≤ T ≤ 366 K for N + NO_2 → N_2O + O. The reported error limits are at the 95% confidence level. The reaction kinetics are consistent with other radical-radical reactions, essentially no enthalpic barrier is observed. Substitution of the measured rate of R_1 for the value recommended hi the latest Jet Propulsion Laboratory compendium [DeMore et al., 1992] results in a small change in the concentration of ozone predicted in a two-dimensional photochemical model. Modeled ozone concentrations are higher (approximately 1%) in the high-latitude upper stratosphere as a result of a 3–10% reduction in the calculated concentrations of NO_y
Emission factors for open and domestic biomass burning for use in atmospheric models
Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr^(−1) of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH_3CN) are highlighted and key areas requiring future research are briefly discussed
α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO_x environments
The gas-phase oxidation of α-pinene produces a large amount of secondary organic aerosol (SOA) in the atmosphere. A number of carboxylic acids, organosulfates and nitrooxy organosulfates associated with α-pinene have been found in field samples and some are used as tracers of α-pinene oxidation. α-pinene reacts readily with OH and O_3 in the atmosphere followed by reactions with both HO_2 and NO. Due to the large number of potential reaction pathways, it can be difficult to determine what conditions lead to SOA. To better understand the SOA yield and chemical composition from low- and high-NO_x OH oxidation of α-pinene, studies were conducted in the Caltech atmospheric chamber under controlled chemical conditions. Experiments used low O_3 concentrations to ensure that OH was the main oxidant and low α-pinene concentrations such that the peroxy radical (RO_2) reacted primarily with either HO_2 under low-NO_x conditions or NO under high-NO_x conditions. SOA yield was suppressed under conditions of high-NO_x. SOA yield under high-NO_x conditions was greater when ammonium sulfate/sulfuric acid seed particles (highly acidic) were present prior to the onset of growth than when ammonium sulfate seed particles (mildly acidic) were present; this dependence was not observed under low-NO_x conditions. When aerosol seed particles were introduced after OH oxidation, allowing for later generation species to be exposed to fresh inorganic seed particles, a number of low-NO_x products partitioned to the highly acidic aerosol. This indicates that the effect of seed acidity and SOA yield might be under-estimated in traditional experiments where aerosol seed particles are introduced prior to oxidation. We also identify the presence of a number of carboxylic acids that are used as tracer compounds of α-pinene oxidation in the field as well as the formation of organosulfates and nitrooxy organosulfates. A number of the carboxylic acids were observed under all conditions, however, pinic and pinonic acid were only observed under low-NO_x conditions. Evidence is provided for particle-phase sulfate esterification of multi-functional alcohols
Formation and Propagation of Discontinuity for Boltzmann Equation in Non-Convex Domains
The formation and propagation of singularities for Boltzmann equation in
bounded domains has been an important question in numerical studies as well as
in theoretical studies. Consider the nonlinear Boltzmann solution near
Maxwellians under in-flow, diffuse, or bounce-back boundary conditions. We
demonstrate that discontinuity is created at the non-convex part of the grazing
boundary, then propagates only along the forward characteristics inside the
domain before it hits on the boundary again.Comment: 39 pages, 5 Figure
Monitoring potential photochemical interference in laser-induced fluorescence measurements of atmospheric OH
In situ laser-induced fluorescence measurements of atmospheric OH are susceptible to interference from laser generated OH, particularly in the troposphere. To quantify this interference we implement the addition of perfluoropropene, C_3F_6, for the chemical removal of OH from the ambient air. The removal rate of OH by C_3F_6 is determined in the laboratory using the discharge flow technique. Over the temperature range 249 to 296 K the rate constant is (6.0±0.8) × 10^(−13) exp[(370±40)/T] cm^³ molecule^(−1) s^(−1), independent of pressure. In situ measurements using C_3F_6 addition are performed in both aircraft-borne and ground-based experiments. These studies show that laser excitation of the ^²Σ^+(v=1)← ^²Π(v=0) transition (282 nm) at high pulse repetition rates and low peak power can provide reliable and sensitive measurements of tropospheric OH
Recommended from our members
Quantifying the loss of processed natural gas within California's South Coast Air Basin using long-term measurements of ethane and methane
Abstract. Methane emissions inventories for Southern California's South Coast Air Basin (SoCAB) have underestimated emissions from atmospheric measurements. To provide insight into the sources of the discrepancy, we analyze records of atmospheric trace gas total column abundances in the SoCAB starting in the late 1980s to produce annual estimates of the ethane emissions from 1989 to 2015 and methane emissions from 2007 to 2015. The first decade of measurements shows a rapid decline in ethane emissions coincident with decreasing natural gas and crude oil production in the basin. Between 2010 and 2015, however, ethane emissions have grown gradually from about 13 ± 5 to about 23 ± 3 Gg yr−1, despite the steady production of natural gas and oil over that time period. The methane emissions record begins with 1 year of measurements in 2007 and continuous measurements from 2011 to 2016 and shows little trend over time, with an average emission rate of 413 ± 86 Gg yr−1. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing by 0.62 ± 0.05 % yr−1, consistent with the ratios measured in the delivered gas. Our atmospheric measurements also show an increase in these ratios but with a slope of 0.36 ± 0.08 % yr−1, or 58 ± 13 % of the slope calculated from the withdrawn gas. From this, we infer that more than half of the excess methane in the SoCAB between 2012 and 2015 is attributable to losses from the natural gas infrastructure
In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC
A NASA DC‐8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC4 ) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO2 measurements. Elevated concentrations of SO2, sulfate aerosol, and particles were measured by DC‐8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ∼2 h at Huila to ∼22–48 h downwind of Ecuador. The plumes contained sulfate‐rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In‐plume O3 concentrations were ∼70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O3 depletion via reactive halogen chemistry. The TC4 data record rapid cloud processing of the Huila volcanic plume involving aqueous‐phase oxidation of SO2 by H2O2, but overall the data suggest average in‐plume SO2 to sulfate conversion rates of ∼1%–2% h−1 . SO2 column amounts measured in the Tungurahua plume (∼0.1–0.2 Dobson units) are commensurate with average SO2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacit
- …