9 research outputs found

    A Microfluidic Device for the Investigation of Rapid Gold Nanoparticle Formation in Continuous Turbulent Flow

    Get PDF
    A new setup with an integrated microfluidic chip with small dead time, high time resolution and compatibility with in situ X-ray absorption (XAS) measurements is presented. It can also be combined with a free liquid jet. By using the microfluidic chip the short reaction times from 2 to 20 milliseconds can be observed, beyond that an external cyclone mixer for extended observation times was applied. The reduction of gold ions with tetrakis(hydroxy-methyl)phosphonium (THPC) has been investigated in the microfluidic setup to monitor this reaction yielding small gold nanoparticles, requiring preferentially a free liquid jet

    A Microfluidic Device for the Investigation of Rapid Gold Nanoparticle Formation in Continuous Turbulent Flow

    No full text
    A new setup with an integrated microfluidic chip with small dead time, high time resolution and compatibility with in situ X-ray absorption (XAS) measurements is presented. It can also be combined with a free liquid jet. By using the microfluidic chip the short reaction times from 2 to 20 milliseconds can be observed, beyond that an external cyclone mixer for extended observation times was applied. The reduction of gold ions with tetrakis(hydroxy-methyl)phosphonium (THPC) has been investigated in the microfluidic setup to monitor this reaction yielding small gold nanoparticles, requiring preferentially a free liquid jet
    corecore