53 research outputs found

    Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors

    Get PDF
    BACKGROUND: Neuroinflammation plays a prominent role in the progression of Alzheimer's disease and may be responsible for degeneration in vulnerable regions such as the hippocampus. Neuroinflammation is associated with elevated levels of extracellular glutamate and potentially an enhanced stimulation of glutamate N-methyl-D-aspartate receptors. This suggests that neurons that express these glutamate receptors might be at increased risk of degeneration in the presence of chronic neuroinflammation. METHODS: We have characterized a novel model of chronic brain inflammation using a slow infusion of lipopolysaccharide into the 4(th )ventricle of rats. This model reproduces many of the behavioral, electrophysiological, neurochemical and neuropathological changes associated with Alzheimer's disease. RESULTS: The current study demonstrated that chronic neuroinflammation is associated with the loss of N-methyl-D-aspartate receptors, as determined both qualitatively by immunohistochemistry and quantitatively by in vitro binding studies using [(3)H]MK-801, within the hippocampus and entorhinal cortex. CONCLUSION: The gradual loss of function of this critical receptor within the temporal lobe region may contribute to some of the cognitive deficits observed in patients with Alzheimer's disease

    Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer's disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs.</p> <p>Presentation of the hypothesis</p> <p>The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD.</p> <p>Testing the hypothesis</p> <p>To test this hypothesis, epidemiological studies on long term, chronic cannabinoid users could enlighten us on the potential benefits of these compounds in normal and pathological ageing processes. Systematic pharmacological (and thus more mechanistic) investigations using animal models of Alzheimer's disease that have been developed would also allow a thorough investigation of the benefits of cannabinoid pharmacotherapy in the pathogenesis of Alzheimer's disease.</p> <p>Implications of the hypothesis</p> <p>The chronic administration of non-selective cannabinoids may delay the onset of cognitive deficits in AD patients; this will dramatically reduce the socio-economic burden of AD and improve the quality of life of the patients and their families.</p

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    [\u3csup\u3e3\u3c/sup\u3eH] Ketanserin (Serotonin Type 2) Binding Increases in Rat Cortex Following Basal Forebrain Lesions with Ibotenic Acid

    No full text
    The response of the serotonergic system following injury to the basal forebrain cholinergic system was investigated in rats. The density of 5-hydroxytryptamine (serotonin) type 2 (S2) receptor sites in the frontal cortex and hippocampus was determined 1 week and 4 months after production of lesions by injections of ibotenic acid into the medial septum and nucleus basalis magnocellularis. One week later, the number of S2 receptor sites in the frontal neocortex, as defined by [3H]ketanserin binding, was unchanged. Four months later, the number of [3H]ketanserin binding sites (and Bmax) was increased and high-affinity [3H]serotonin uptake was decreased in the frontal neocortex, but not in the hippocampus, relative to unlesioned controls. Choline acetyltransferase (acetyl-CoA:choline O-acetyltransferase; EC 2.3.1.6) activity was decreased significantly in the frontal neocortex and hippocampus 1 week and 4 months after surgery. The change in frontal neocortical S2 receptor site density (a) was inversely related to the level of choline acetyltransferase activity, (b) was specific for cholinergic denervation associated with the cortex but not the hippocampus, and (c) may represent a localized denervation supersensitivity due to degeneration of median raphe cortical afferents
    corecore