34 research outputs found

    Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics

    Get PDF
    Objective This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. Methods We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian×Barka cross bred cattle populations. Results In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were 0.7540±0.043 and 0.0010±0.000, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance (F ST) was 0.049539 with the highest (F ST = 0.1245) and the lowest (F ST = 0.011) F ST distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. Conclusion Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus

    The Impact of Consumer Participation Certification on the Trust of Eco-Agricultural Products Based on the Mediating Effects of Information and Identity

    No full text
    With the increasing distrust of food safety, both third-party certification systems (TPC) and participatory guarantee systems (PGS) play a vital role in restoring consumer trust. Although the fact that previous research has focused on consumer trust and the factors that impact it in TPC products, little emphasis has been made on how consumer participation in certification affects trust. The goal of the study was to explore how consumer participation certification affects trust in eco-agricultural products under PGS. We constructed a theoretical framework of consumer trust in eco-agricultural products under PGS, based on consumer trust theory, and clarified the relationship between consumer participation certification, information quality, social identity, and consumer trust. After obtaining 238 valid questionnaires on consumers from 12 PGS organizations nationwide, a structural equation model (SEM) was conducted. The conclusions are as follows: (1) Consumer participation has a positive impact on consumer trust, and the direct effect is not significant, but the indirect effect is significant; (2) Information quality and social identity have been identified to play full intermediary roles in the relationship between consumer participation and trust. We suggest relevant research implications and recommendations for future research on consumer trust in PGS based on the findings

    Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    No full text
    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse

    Retrieval of Atmospheric Water Vapor Content in the Environment from AHI/H8 Using Both Physical and Random Forest Methods—A Case Study for Typhoon Maria (201808)

    No full text
    The advanced imagers onboard the new generation of geostationary satellites could provide multilayer atmospheric moisture information with unprecedented high spatial and temporal resolutions, while the physical retrieval algorithm (One-Dimensional Variational, 1DVAR) is performed for operational atmospheric water vapor products with reduced resolutions, which is due to the limited computational efficiency of the physical retrieval algorithm. In this study, a typical cost-efficient machine learning (Random Forecast, RF) algorithm is adopted and compared with the physical retrieval algorithm for retrieving the atmospheric moisture from the measurements of Advance Himawari Imager (AHI) onboard the Himawari-8 satellite during the typhoon Maria (201808). It is found that the accuracy of the RF-based algorithm has much high computational efficiency and provides moisture retrievals with accuracy 35–45% better than that of 1DVAR, which means the retrieval process can be conducted at full spatial resolution for potential operational application. Both the Global Forecast System (GFS) forecasts and the AHI measurements are necessary information for moisture retrievals; they provide added value for each other

    Effects of CO2 Changes on Hyperspectral Infrared Radiances and Its Implications on Atmospheric Temperature Profile Retrieval and Data Assimilation in NWP

    No full text
    Although atmospheric CO2 is a trace gas, it has seasonal variations and has increased over the last decade. Its seasonal variation and increase have substantial radiative effects on hyperspectral infrared (IR) radiance calculations in both longwave (LW) and shortwave (SW) CO2 absorption spectral regions that are widely used for weather and climate applications. The effects depend on the spectral coverage and spectral resolution. The radiative effect caused by the increase of CO2 has been calculated to be greater than 0.5 K within 5 years, whereas a radiative effect of 0.1–0.5 K is introduced by the seasonal variation in some CO2 absorption spectral regions. It is important to take into account the increasing trend and seasonal variation of CO2 in retrieving the atmospheric temperature profile from hyperspectral IR radiances and in the radiance assimilation in numerical weather prediction (NWP) models. The simulation further indicates that it is very difficult to separate atmospheric temperature and CO2 information from hyperspectral IR sounder radiances because the atmospheric temperature signal is much stronger than that of CO2 in the CO2 absorption IR spectral regions

    Evaluation of Temperature and Humidity Profiles Retrieved from Fengyun-4B and Implications for Typhoon Assimilation and Forecasting

    No full text
    Fengyun-4B (FY-4B) is the first operational satellite from China’s latest generation of geostationary meteorological satellites. It is equipped with the Geostationary Interferometric Infrared Sounder (GIIRS), which is able to obtain highly accurate atmospheric temperature and humidity profiles through hyperspectral detection in long- and mid-wave infrared spectral bands. In this study, the accuracy of the FY-4B/GIIRS temperature and humidity profile retrievals over two months is evaluated using radiosonde observations and ERA5 reanalysis data. We go a step further to investigate the impact of the satellite retrievals on assimilation and forecasts for Typhoons Chaba and Ma-on in 2022. Results reveal that the root-mean-square difference (RMSD) for the FY-4B/GIIRS temperature and humidity profile retrievals were within 1 K and 1.5 g/kg, respectively, demonstrating high overall accuracy. Moreover, assimilating temperature and humidity profiles from FY-4B/GIIRS positively impacts model analysis and prediction, improving typhoon track and intensity forecasts. Additionally, improvements have been discovered in predicting precipitation, particularly with high-magnitude rainfall events
    corecore