4,171 research outputs found

    Entanglement renormalization of anisotropic XY model

    Full text link
    The renormalization group flows of the one-dimensional anisotropic XY model and quantum Ising model under a transverse field are obtained by different multiscale entanglement renormalization ansatz schemes. It is shown that the optimized disentangler removes the short-range entanglement by rotating the system in the parameter space spanned by the anisotropy and the magnetic field. It is understood from the study that the disentangler reduces the entanglement by mapping the system to another one in the same universality class but with smaller short range entanglement. The phase boundary and corresponding critical exponents are calculated using different schemes with different block sizes, look-ahead steps and truncation dimensions. It is shown that larger truncation dimension leads to more accurate results and that using larger block size or look-ahead step improve the overall calculation consistency.Comment: 5 pages, 3 figure

    LL-valley electron gg factor in bulk GaAs and AlAs

    Full text link
    We study the Land\'e gg-factor of conduction electrons in the LL-valley of bulk GaAs and AlAs by using a three-band k⋅p\mathbf{k}\cdot\mathbf{p} model together with the tight-binding model. We find that the LL-valley gg-factor is highly anisotropic, and can be characterized by two components, g⊥g_{\perp} and g∥g_{\|}. g⊥g_{\perp} is close to the free electron Land\'e factor but g∥g_{\|} is strongly affected by the remote bands. The contribution from remote bands on g∥g_{\|} depends on how the remote bands are treated. However, when the magnetic field is in the Voigt configuration, which is widely used in the experiments, different models give almost identical gg-factor.Comment: 4 pages, 1 figure, To be published in J. App. Phys. 104, 200

    Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes

    Get PDF
    A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube both along the axial and along the radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.Comment: 13 pages, 4 figure

    Decoherence and relaxation in the interacting quantum dot system

    Full text link
    In this paper we study the low temperature kinetics of the electrons in the system composed of a quantum dot connected to two leads by solving the equation of motion. The decoherence and the relaxation of the system caused by the gate voltage noise and electron-phonon scattering are investigated. In order to take account of the strong correlation of the electrons in this system, the quasi-exact wave functions are calculated using an improved matrix product states algorithm. This algorithm enables us to calculate the wave functions of the ground state and the low lying excited states with satisfied accuracy and thus enables us to study the kinetics of the system more effectively. It is found that although both of these two mechanisms are proportional to the electron number operator in the dot, the kinetics are quite different. The noise induced decoherence is much more effective than the energy relaxation, while the energy relaxation and decoherence time are of the same order for the electron-phonon scattering. Moreover, the noise induced decoherence increases with the lowering of the dot level, but the relaxation and decoherence due to the electron-phonon scattering decrease.Comment: Minor revision. Add journal referenc

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the t−Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors

    Full text link
    In view of the recent experimental facts in the iron-pnictides, we make a proposal that the itinerant electrons and local moments are simultaneously present in such multiband materials. We study a minimal model composed of coupled itinerant electrons and local moments to illustrate how a consistent explanation of the experimental measurements can be obtained in the leading order approximation. In this mean-field approach, the spin-density-wave (SDW) order and superconducting pairing of the itinerant electrons are not directly driven by the Fermi surface nesting, but are mainly induced by their coupling to the local moments. The presence of the local moments as independent degrees of freedom naturally provides strong pairing strength for superconductivity and also explains the normal-state linear-temperature magnetic susceptibility above the SDW transition temperature. We show that this simple model is supported by various anomalous magnetic properties and isotope effect which are in quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio

    Urban energy exchanges monitoring from space

    Get PDF
    One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling
    • …
    corecore