9,484 research outputs found

    Measurements of the effect of horizontal variability of atmospheric backscatter on dial measurements

    Get PDF
    The horizontal variability of atmospheric backscatter may have a substantial effect on how Differential Absorption Lidar (DIAL) data must be taken and analyzed. To minimize errors, lidar pulse pairs are taken with time separations which are short compared to the time scales associated with variations in atmospheric backscatter. To assess the atmospheric variability for time scales which are long compared to the lidar pulse repetition rate, the variance of the lidar return signal in a given channel can be computed. The variances of the on-line, off-line, and ration of the on-line to off-line signals at given altitudes obtained with the dual solid-state Alexandrite laser system were calculated. These evaluations were made for both down-looking aircraft and up-looking ground-based lidar data. Data were taken with 200 microsecond separation between on-line and off-line laser pulses, 30 m altitude resolution, 5 Hz repetition rate, and the signal were normalized for outgoing laser energy

    Mean-Field Description of Phase String Effect in the tJt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the tJt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure

    Quantum Information Propagation Preserving Computational Electromagnetics

    Full text link
    We propose a new methodology, called numerical canonical quantization, to solve quantum Maxwell's equations useful for mathematical modeling of quantum optics physics, and numerical experiments on arbitrary passive and lossless quantum-optical systems. It is based on: (1) the macroscopic (phenomenological) electromagnetic theory on quantum electrodynamics (QED), and (2) concepts borrowed from computational electromagnetics. It was shown that canonical quantization in inhomogeneous dielectric media required definite and proper normal modes. Here, instead of ad-hoc analytic normal modes, we numerically construct complete and time-reversible normal modes in the form of traveling waves to diagonalize the Hamiltonian. Specifically, we directly solve the Helmholtz wave equations for a general linear, reciprocal, isotropic, non-dispersive, and inhomogeneous dielectric media by using either finite-element or finite-difference methods. To convert a scattering problem with infinite number of modes into one with a finite number of modes, we impose Bloch-periodic boundary conditions. This will sparsely sample the normal modes with numerical Bloch-Floquet-like normal modes. Subsequent procedure of numerical canonical quantization is straightforward using linear algebra. We provide relevant numerical recipes in detail and show an important numerical example of indistinguishable two-photon interference in quantum beam splitters, exhibiting Hong-Ou-Mandel effect, which is purely a quantum effect. Also, the present methodology provides a way of numerically investigating existing or new macroscopic QED theories. It will eventually allow quantum-optical numerical experiments of high fidelity to replace many real experiments as in classical electromagnetics.Comment: 17 pages, 11 figures, journal article submitted to Physical review A (under review

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tJt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Enhanced Mechanisms for Navigation and Tracking Services in Smart Phones

    Get PDF
    Combining Global Positioning System (GPS) and Short Message Service (SMS), this paper develops a realisticsystem, called Mobile Navigation and Tracking System (MNTS), to provide navigation and target tracking services.MNTS is an Android based mobile application which integrated many enhanced mechanisms for navigation andtarget tracking services. MNTS not only provides users with the GPS navigation capability, but also supports QuickResponse (QR) code decoding, nearby scenic spot searching, friend positioning and target tracking. In targettracking, MNTS utilizing SMS mainly adopts two proposed novel approaches: location prediction and dynamicthreshold to reduce the number of short message transmissions while maintaining location accuracy within anacceptable range. Location prediction utilizes the current target’s location, moving speed, bearing to predict its nextlocation. When the distance between the predicted location and the actual location exceeds a threshold, the targetsends a short message to the tracker to update the actual location. Based on the movement speed of the target,the threshold is dynamically adjusted to balance the location accuracy and the number of short messages.Furthermore, as MNTS is free and open-source software, service providers or developers can easily extend theirown services based on this system

    Effect of allicin on THP-1, MT-2 and WISH cell apoptosis induced by vesicular stomatitis virus (VSV) and the molecular mechanism involved

    Get PDF
    Vesicular stomatitis virus (VSV) has been reported to induce apoptosis and the onset of apoptosis may play an important role in virus-associated diseases. This study was conducted in order to investigate the protective effect of the herbal constituent allicin on VSV-induced apoptosis in the human monocyte line THP-1, human T lymphocytic leukemia cell line MT-2 and human amniotic cell line WISH and to determine the possible molecular mechanism involved. The THP-1, MT-2 and WISH cells were incubated with VSV in the absence or presence of different doses of allicin (10, 25 and 50 μg/ml). To study apoptosis, the cells were assessed by MTT and annexin V-propidium iodide double-staining flow cytometry. To investigate the molecular mechanism by which allicin regulates VSV-induced THP-1, MT-2 and WISH cell apoptosis, the expression of active cleavage products of caspases 3, 6, 7 and 9 and NF-κB was analyzed by western blotting. Our results indicated that allicin did not affect the adhesion and entry of VSV into THP-1, MT-2 or WISH cells. Using different concentrations of allicin, a dose-dependent protective effect on  cell apoptosis was observed. In addition, the VSV-induced expression of active cleavage products of caspases 3, 6, 7 and 9 and NF-κB in THP-1, MT-2 and WISH cells was also significantly reduced by allicin at the protein level. We concluded that allicin protects THP-1, MT-2 and WISH cells from VSV-induced apoptosis by inhibiting the activation of caspases 3, 6, 7 and 9 and NF-κB, thereby suggesting a potential protective effect for allicin against virus-associated diseases.Key words: Allicin, vesicular stomatitis virus (VSV), apoptosis, caspases, NF-κB

    Data Mining of Telematics Data: Unveiling the Hidden Patterns in Driving Behaviour

    Full text link
    With the advancement in technology, telematics data which capture vehicle movements information are becoming available to more insurers. As these data capture the actual driving behaviour, they are expected to improve our understanding of driving risk and facilitate more accurate auto-insurance ratemaking. In this paper, we analyze an auto-insurance dataset with telematics data collected from a major European insurer. Through a detailed discussion of the telematics data structure and related data quality issues, we elaborate on practical challenges in processing and incorporating telematics information in loss modelling and ratemaking. Then, with an exploratory data analysis, we demonstrate the existence of heterogeneity in individual driving behaviour, even within the groups of policyholders with and without claims, which supports the study of telematics data. Our regression analysis reiterates the importance of telematics data in claims modelling; in particular, we propose a speed transition matrix that describes discretely recorded speed time series and produces statistically significant predictors for claim counts. We conclude that large speed transitions, together with higher maximum speed attained, nighttime driving and increased harsh braking, are associated with increased claim counts. Moreover, we empirically illustrate the learning effects in driving behaviour: we show that both severe harsh events detected at a high threshold and expected claim counts are not directly proportional with driving time or distance, but they increase at a decreasing rate
    corecore