8,575 research outputs found
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Electron spin relaxation in cubic GaN quantum dots
The spin relaxation time in zinc blende GaN quantum dot is
investigated for different magnetic field, well width and quantum dot diameter.
The spin relaxation caused by the two most important spin relaxation mechanisms
in zinc blende semiconductor quantum dots, {i.e.} the electron-phonon
scattering in conjunction with the Dresselhaus spin-orbit coupling and the
second-order process of the hyperfine interaction combined with the
electron-phonon scattering, are systematically studied. The relative importance
of the two mechanisms are compared in detail under different conditions. It is
found that due to the small spin orbit coupling in GaN, the spin relaxation
caused by the second-order process of the hyperfine interaction combined with
the electron-phonon scattering plays much more important role than it does in
the quantum dot with narrower band gap and larger spin-orbit coupling, such as
GaAs and InAs.Comment: 8 pages, 5 figures, PRB 79, 2009, in pres
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Temporal eye-voice span as a dynamic indicator for cognitive effort during speech processing: A comparative study of reading aloud and sight translation
This chapter examines the dynamic latency between human translators’ reading input and speaking output during reading aloud and sight translation. It aims to determine whether the temporal eye-voice span (EVS) at sentence level could work as a dynamitic indicator of cognitive effort during speech processing. Thirty participants performed both the reading aloud and sight translation tasks with either English or Chinese texts. Their eye movements and speech outputs were recorded by an eye-tracker and an audio recorder, respectively. EVS at sentence initial and sentence terminal positions in the reading aloud and sight translation tasks were analyzed. The results show that the lengths of both sentence-initial and sentence-terminal EVS in sight translation tasks are significantly longer than those in reading aloud tasks. This is in line with results of total gaze fixation duration and fixation count, which are closely related to cognitive effort. Further correlation tests show that both initial and terminal EVS yield a positive although weak correlation with the fixation indexes in the sight translation tasks, while discrepant results emerge in the reading aloud tasks. Hence, we suggest that temporal EVS can be used to discriminate different types of reading-speaking tasks and has the potential to serve as a dynamic indicator of cognitive effort during sight translation
- …