The spin relaxation time T1 in zinc blende GaN quantum dot is
investigated for different magnetic field, well width and quantum dot diameter.
The spin relaxation caused by the two most important spin relaxation mechanisms
in zinc blende semiconductor quantum dots, {i.e.} the electron-phonon
scattering in conjunction with the Dresselhaus spin-orbit coupling and the
second-order process of the hyperfine interaction combined with the
electron-phonon scattering, are systematically studied. The relative importance
of the two mechanisms are compared in detail under different conditions. It is
found that due to the small spin orbit coupling in GaN, the spin relaxation
caused by the second-order process of the hyperfine interaction combined with
the electron-phonon scattering plays much more important role than it does in
the quantum dot with narrower band gap and larger spin-orbit coupling, such as
GaAs and InAs.Comment: 8 pages, 5 figures, PRB 79, 2009, in pres