29 research outputs found

    Breathing pattern and pulmonary gas exchange in elderly patients with and without left ventricular dysfunction-modification with exercise-based cardiac rehabilitation and prognostic value.

    Get PDF
    BACKGROUND Inefficient ventilation is an established prognostic marker in patients with heart failure. It is not known whether inefficient ventilation is also linked to poor prognosis in patients with left ventricular dysfunction (LVD) but without overt heart failure. OBJECTIVES To investigate whether inefficient ventilation in elderly patients with LVD is more common than in patients without LVD, whether it improves with exercise-based cardiac rehabilitation (exCR), and whether it is associated with major adverse cardiovascular events (MACE). METHODS In this large multicentre observational longitudinal study, patients aged ≥65 years with acute or chronic coronary syndromes (ACS, CCS) without cardiac surgery who participated in a study on the effectiveness of exCR in seven European countries were included. Cardiopulmonary exercise testing (CPET) was performed before, at the termination of exCR, and at 12 months follow-up. Ventilation (VE), breathing frequency (BF), tidal volume (VT), and end-expiratory carbon dioxide pressure (PETCO2) were measured at rest, at the first ventilatory threshold, and at peak exercise. Ventilatory parameters were compared between patients with and without LVD (based on cardio-echography) and related to MACE at 12 month follow-up. RESULTS In 818 patients, age was 72.5 ± 5.4 years, 21.9% were women, 79.8% had ACS, and 151 (18%) had LVD. Compared to noLVD, in LVD resting VE was increased by 8%, resting BF by 6%, peak VE, peak VT, and peak PETCO2 reduced by 6%, 8%, and 5%, respectively, and VE/VCO2 slope increased by 11%. From before to after exCR, resting VE decreased and peak PETCO2 increased significantly more in patients with compared to without LVD. In LVD, higher resting BF, higher nadir VE/VCO2, and lower peak PETCO2 at baseline were associated with MACE. CONCLUSIONS Similarly to patients with HF, in elderly patients with ischemic LVD, inefficient resting and exercise ventilation was associated with worse outcomes, and ExCR alleviated abnormal breathing patterns and gas exchange parameters

    The Study Protocol for the LINC (LUCAS in Cardiac Arrest) Study: a study comparing conventional adult out-of-hospital cardiopulmonary resuscitation with a concept with mechanical chest compressions and simultaneous defibrillation

    Get PDF
    BACKGROUND: The LUCAS™ device delivers mechanical chest compressions that have been shown in experimental studies to improve perfusion pressures to the brain and heart as well as augmenting cerebral blood flow and end tidal CO(2,) compared with results from standard manual cardiopulmonary resuscitation (CPR). Two randomised pilot studies in out-of-hospital cardiac arrest patients have not shown improved outcome when compared with manual CPR. There remains evidence from small case series that the device can be potentially beneficial compared with manual chest compressions in specific situations. This multicentre study is designed to evaluate the efficacy and safety of mechanical chest compressions with the LUCAS™ device whilst allowing defibrillation during on-going CPR, and comparing the results with those of conventional resuscitation. METHODS/DESIGN: This article describes the design and protocol of the LINC-study which is a randomised controlled multicentre study of 2500 out-of-hospital cardiac arrest patients. The study has been registered at ClinicalTrials.gov (http://clinicaltrials.gov/ct2/show/NCT00609778?term=LINC&rank=1). RESULTS: Primary endpoint is four-hour survival after successful restoration of spontaneous circulation. The safety aspect is being evaluated by post mortem examinations in 300 patients that may reflect injuries from CPR. CONCLUSION: This large multicentre study will contribute to the evaluation of mechanical chest compression in CPR and specifically to the efficacy and safety of the LUCAS™ device when used in association with defibrillation during on-going CPR

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    Diagnosis of active tuberculosis by e-nose analysis of exhaled air

    No full text
    Tuberculosis (TB), a highly infectious airborne disease, remains a major global health problem. Many of the new diagnostic techniques are not suited for operation in the highly-endemic low-income countries. A sensitive, fast, easy-to-operate and low-cost method is urgently needed. We performed a Proof of Principle Study (30 participants) and a Validation Study (194 participants) to estimate the diagnostic accuracy of a sophisticated electronic nose (DiagNose, C-it BV) using exhaled air to detect tuberculosis. The DiagNose uses a measurement method that enables transfer of calibration models between devices thus eliminating the most common pitfall for large scale implementation of electronic noses in general. DiagNose measurements were validated using traditional sputum sm We found a sensitivity of 95.9% and specificity of 98.5% for the pilot study. In the validation study we found a sensitivity of 93.5% and a specificity of 85.3% discriminating healthy controls from TB patients, and a sensitivity of 76.5% and specificity of 87.2% when identifying TB patient within the entire test-population (best-case numbers). The portability and fast time-to-result of the DiagNose enables a proactive screening search for new TB cases in rural areas, without the need for highly-skilled operators or a hospital center infrastructure. (C) 2012 Elsevier Ltd. All rights reserved

    Enabling a transferable calibration model for metal-oxide type electronic noses

    No full text
    While electronic noses have been around for over 30 years, little effort has been devoted to the development of transferable calibration models, which are models that can be applied to multiple equivalent devices without adjustment. The majority of published results limit itself to data sets gathered with a single device. This lack of insight in transferable models hampers large scale implementations of eNose-based applications as individual calibration of a multitude of devices for a specific application area is generally unrealistic due to the requirement of actual samples to be measured. For simple gases this may be do-able, but in the case of more complex samples such as biological patient material it is logistically impossible. In this paper we show the influence of the deviation of the sensor temperature on the measurement reproducibility and by inference on the transferability of calibration models. We introduce the total inertia (φ2) as a measure for the heterogeneity within the measured data. The total inertia is an objective measure known from linear algebra, where it is used to calculate the correspondence between matrices. We use 5 micro-hotplate metal-oxide sensors from the same wafer, with an inter-sensor heater temperature difference of approximately 15 C in combination with 2 substances, n-butyl-acetate and hexane. This research demonstrates the increase in heterogeneity of the measured response values in relation to a temperature shift. A shift of 15 C at the sensor surface causes an increase of heterogeneity that is 10-15 times higher than the increase in heterogeneity caused by inter-sensor responses to the substances when operated at exactly the same temperature. Some mixtures of substances will be separable by pattern recognition under virtually any condition, and strict temperature control will neither improve nor deteriorate results. However the significant contribution of temperature deviation toward data heterogeneity renders it plausible that optimized temperature control, and by inference lower data heterogeneity, is a prerequisite for transferability of a calibration model. This holds true when applied to metal-oxide sensors and for mixtures containing substances showing a fair degree of similarity

    Serious complications in gene-expression studies with stress perturbation: An example of UV-exposed p53-mutant mouse embryonic fibroblasts

    No full text
    Reanalysis of our UV study of p53-mutant mouse embryonic fibroblasts revealed an intriguing orchestration of massive transcriptome responses. However, close scrutiny of the data uncovered an affected mRNA/rRNA ratio, effectively inhibiting valid data analysis. UV-dose range-finding showed low-dose UV specific- and high-dose stress-related responses, which represent a plea for UV dose range-finding in experimental design
    corecore