5 research outputs found

    Hikers poisoned: <i>Veratrum</i> steroidal alkaloid toxicity following ingestion of foraged <i>Veratrum parviflorum</i>

    No full text
    <p><b>Introduction:</b> Steroidal alkaloids are found in plants of the genus <i>Veratrum</i>. Their toxicity manifests as gastrointestinal symptoms followed by a Bezold–Jarisch reflex: hypopnea, hypotension, and bradycardia. Some <i>Veratrum</i> steroidal alkaloids are also teratogens interfering with the hedgehog-2 signaling pathway, which causes cyclopsia and holoprosencephaly. We present a case of accidental poisoning from <i>Veratrum parviflorum</i> mistaken for the edible <i>Allium tricoccum</i> (ramps, wild leek).</p> <p><b>Case history:</b> A 27-year-old man and his 25-year-old wife presented to the emergency department with nausea, vomiting, hypotension, and bradycardia after foraging and ingesting plants that they believed to be a local native species of wild leek.</p> <p><b>Methods:</b> We collected and analyzed the implicated fresh plant material and both patients’ serum/plasma. We used liquid chromatography–mass spectroscopy and high-resolution electrospray ionization time of flight tandem mass spectrometry to extract and characterize steroidal alkaloids from the foraged plant and patients’ serum.</p> <p><b>Results:</b> Our <i>V. parviflorum</i> samples contained verazine, veratramine, veratridine, and cyclopamine.</p> <p><b>Discussion:</b> Steroidal alkaloids have been previously isolated from <i>Veratrum viride</i> and <i>Veratrum album</i> and toxicity has been reported mainly from <i>V. album</i> species.</p> <p><b>Conclusion:</b><i>V. parviflorum</i> toxicity manifests with gastrointestinal and cardiac symptoms. Treatment is symptomatic and supportive as with previous case reports of toxicity with other <i>Veratrum</i> species.</p

    M1 Langrange combined input and output

    No full text
    Combined Lagrange M1 model input python script followed by the results output. This includes the dispersal constraints, geographic coding for taxa, concatenated 85 genes ML tree, and inferred ancestral areas within two log-likelihoods of the most likely area with relative probabilities

    DataSheet_2_Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes.xlsx

    No full text
    We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.</p

    DataSheet_1_Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes.docx

    No full text
    We assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree. Within orders, around six of 72 families shifted positions relative to the recent plastome analysis, but four of these involve poorly supported inferred relationships in the plastome-based tree. In Poales, the nuclear data place a clade comprising Ecdeiocoleaceae+Joinvilleaceae as sister to the grasses (Poaceae); Typhaceae, (rather than Bromeliaceae) are resolved as sister to all other Poales. In Commelinales, nuclear data place Philydraceae sister to all other families rather than to a clade comprising Haemodoraceae+Pontederiaceae as seen in the plastome tree. In Liliales, nuclear data place Liliaceae sister to Smilacaceae, and Melanthiaceae are placed sister to all other Liliales except Campynemataceae. Finally, in Alismatales, nuclear data strongly place Tofieldiaceae, rather than Araceae, as sister to all the other families, providing an alternative resolution of what has been the most problematic node to resolve using plastid data, outside of those involving achlorophyllous mycoheterotrophs. As seen in numerous prior studies, the placement of orders Acorales and Alismatales as successive sister lineages to all other extant monocots. Only 21.2% of BUSCO genes were demonstrably single-copy, yet phylogenomic inferences based on BUSCO and CSC genes did not differ, and overall functional annotations of the two sets were very similar. Our analyses also reveal significant gene tree-species tree discordance despite high support values, as expected given incomplete lineage sorting (ILS) related to rapid diversification. Our study advances understanding of monocot relationships and the robustness of phylogenetic inferences based on large numbers of nuclear single-copy genes that can be obtained from transcriptomes and genomes.</p
    corecore