3,131 research outputs found

    Tune Determination of Strongly Coupled Betatron Oscillations in a Fast-Ramping Synchrotron

    Get PDF
    Tune identification - i.e. attribution of the spectral peak to a particular normal mode of oscillations - can present a significant difficulty in the presence of strong transverse coupling when the normal mode with a lower damping rate dominates spectra of Turn-by-Turn oscillations in both planes. The introduced earlier phased sum algorithm helped to recover the weaker normal mode signal from the noise, but by itself proved to be insufficient for automatic peak identification in the case of close phase advance distribution in both planes. To resolve this difficulty we modified the algorithm by taking and analyzing Turn-by-Turn data for two different ramps with the beam oscillation excited in each plane in turn. Comparison of the relative amplitudes of Fourier components allows for automatic correct tune identification. The proposed algorithm was implemented in the Fermilab Booster B38 console application and successfully used in tune, coupling and chromaticity measurements.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Thermal stress cycling of GaAs solar cells

    Get PDF
    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance

    A mobile system for active otpical pollution monitoring

    Get PDF
    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated

    Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    Full text link
    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4x10**12 ppp. Still, the Fermilab neutrino experiments call for even higher intensity of 5.5x10**12 ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Estrategias de formulación de los mercados de abasto y su influencia en la sociedad y cultura

    Get PDF
    Los mercados de abasto es una de las infraestructuras más antiguas de comercialización que convive con el retail moderno, manteniendo su posicionamiento, gracias no solo a la ventaja competitiva del producto fresco sino a los impactos sociales y culturales que generan. Por otro lado los supermercados y su gran desarrollo logístico operacional y fuerte crecimiento, han modificado los hábitos de compra del consumidor, con la creación de distintos formatos de venta, posicionándose cada vez más en la preferencia de compra, pudiéndose perder ese potencial beneficio sociocultural, por lo que los mercados de abasto tradicionales necesitan implementar nuevas estrategias que les permita seguir desarrollando esos aspectos relevantes de la sociedad, recuperando sus orígenes de ser edificaciones potencialmente influyentes de su entorno, a través de intervenciones que generan vinculaciones sociales y culturales, encontrándose en la investigación soluciones como: Beneficios sociales a través de la integración estratégica de comerciantes y vecinos, Beneficios urbanos a través de la integración con su entorno, Beneficios culturales a través de nuevos servicios con valor agregado, mejoras de los servicios internos implementando el diseño emocional y merchandising en la exhibición

    The relaxation dynamics of a simple glass former confined in a pore

    Full text link
    We use molecular dynamics computer simulations to investigate the relaxation dynamics of a binary Lennard-Jones liquid confined in a narrow pore. We find that the average dynamics is strongly influenced by the confinement in that time correlation functions are much more stretched than in the bulk. By investigating the dynamics of the particles as a function of their distance from the wall, we can show that this stretching is due to a strong dependence of the relaxation time on this distance, i.e. that the dynamics is spatially very heterogeneous. In particular we find that the typical relaxation time of the particles close to the wall is orders of magnitude larger than the one of particles in the center of the pore.Comment: 9 pages of Latex, 4 figure

    Short Musculoskeletal Function Assessment:normative data of the Dutch population

    Get PDF
    The Short Musculoskeletal Function Assessment (SMFA) is widely used in both research and clinical practice. Despite its frequent use, normative data of the SMFA have remained limited. Aim of this study was to gather normative data for the Dutch SMFA (SMFA-NL). The SMFA-NL consists of two indices (function index and bother index) and four subscales (upper extremity dysfunction, lower extremity dysfunction, mental and emotional problems, and problems with daily activities). A total of 900 patients were invited to fill in the SMFA-NL. Six age groups (18-24, 25-34, 35-44, 45-54, 55-64, and 65-75 years) were constructed. Analysis of variance, t tests, and regression analyses were used to assess age and gender effects. The response rate was 97 %. There was a significant difference between men and women in scores on all indices and subscales (range p <0.001 to p = 0.002), except for the upper extremity dysfunction subscale (p = 0.06). A significant interaction effect was found between gender and age for the upper extremity dysfunction subscale; a larger decrease in score with increasing age was observed for women, compared with men. Significant differences were found between age groups for the bother index (p <0.001), lower extremity dysfunction subscale (p = 0.001), and the problems with daily activities subscale (p = 0.002). Significant differences in SMFA-NL scores were found between men and women and between different age groups. These SMFA-NL normative data provide an opportunity of benchmarking health status of participants with musculoskeletal disorders or injuries against their age- and gender-matched peers in the Dutch population

    The Magnetic Sensitivity of the Ba II D1 and D2 Lines of the Fraunhofer Spectrum

    Full text link
    The physical interpretation of the spectral line polarization produced by the joint action of the Hanle and Zeeman effects offers a unique opportunity to obtain empirical information about hidden aspects of solar and stellar magnetism. To this end, it is important to achieve a complete understanding of the sensitivity of the emergent spectral line polarization to the presence of a magnetic field. Here we present a detailed theoretical investigation on the role of resonance scattering and magnetic fields on the polarization signals of the Ba II D1 and D2 lines of the Fraunhofer spectrum, respectively at 4934 \AA\ and 4554 \AA. We adopt a three-level model of Ba II, and we take into account the hyperfine structure that is shown by the 135^{135}Ba and 137^{137}Ba isotopes. Despite of their relatively small abundance (18%), the contribution coming from these two isotopes is indeed fundamental for the interpretation of the polarization signals observed in these lines. We consider an optically thin slab model, through which we can investigate in a rigorous way the essential physical mechanisms involved (resonance polarization, Zeeman, Paschen-Back and Hanle effects), avoiding complications due to radiative transfer effects. We assume the slab to be illuminated from below by the photospheric solar continuum radiation field, and we investigate the radiation scattered at 90 degrees, both in the absence and in the presence of magnetic fields, deterministic and microturbulent. We show in particular the existence of a differential magnetic sensitivity of the three-peak Q/I profile that is observed in the D2 line in quiet regions close to the solar limb, which is of great interest for magnetic field diagnostics.Comment: 40 pages, 1 table and 19 figures. Accepted for publication in The Astrophysical Journal (ApJ

    Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry

    Full text link
    We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter

    Isotope shift calculations for atoms with one valence electron

    Full text link
    This work presents a method for the ab initio calculation of isotope shift in atoms and ions with one valence electron above closed shells. As a zero approximation we use relativistic Hartree-Fock and then calculate correlation corrections. The main motivation for developing the method comes from the need to analyse whether different isotope abundances in early universe can contribute to the observed anomalies in quasar absorption spectra. The current best explanation for these anomalies is the assumption that the fine structure constant, alpha, was smaller at early epoch. We test the isotope shift method by comparing the calculated and experimental isotope shift for the alkali and alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be good. We then calculate the isotope shift for some astronomically relevant transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page
    • …
    corecore