5 research outputs found

    Salt tolerance diversity in diploid and polyploid cotton (Gossypium) species

    Get PDF
    Development of salt-tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD-genome) and diploid (A-, D-genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to two weeks of exposure to moderate (50 mM NaCl) and high (100 mM NaCl) hydroponic salinity treatments. Results showed that the most salt tolerant species were the NE Brazilian allopolyploid G. mustelinum, the D-genome diploid G. klotzschianum from the Galapagos Islands, following by the African/Asian, A-genome diploids. Generally, A-genome accessions outperformed D-genome cottons under salinity conditions. Allopolyploid accessions did not show significant differences from either diploid genomic group in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy per se need not be associated with increased salinity stress tolerance, and provide information relevant to utilization of the secondary Gossypium gene pool for breeding improved salt tolerance

    The Grizzly, November 2, 1984

    Get PDF
    Limerick, Part 3, the Controversy: No Simple Solution in Sight • Students Harassed in Two Incidents • Majority of Students Choose Reagan • Editorial: Some Illuminating Self-abuse en Route to an Endorsement • Letter to the Editor • Election \u2784 • 3000 Alumni Return for Homecoming • News of Yesteryear: Coeds to Hold Dormitory Dawn Patrols • UC Student Attends London\u27s Richmond College • Faculty Symposium Here Tomorrow • proTheatre Presents A Thurber Carnival • Shorts: E.T. Forum; PMA Offers Free Admission; H & PE Offers New Course • Career Planning and Placement Offers Services • Debaters Shine • Bears Upset National Power • Soccer Team to Visit China • Diaphragms Stop Delta Pi in Football • Soccer Wins Two, Record at 14-3 • Swimmers Look Strong • Magic Show Tonight • O\u27Chi\u27s Fiftiethhttps://digitalcommons.ursinus.edu/grizzlynews/1126/thumbnail.jp

    Salt tolerance diversity in diploid and polyploid cotton (Gossypium) species

    No full text
    Development of salt-tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD-genome) and diploid (A-, D-genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to two weeks of exposure to moderate (50 mM NaCl) and high (100 mM NaCl) hydroponic salinity treatments. Results showed that the most salt tolerant species were the NE Brazilian allopolyploid G. mustelinum, the D-genome diploid G. klotzschianum from the Galapagos Islands, following by the African/Asian, A-genome diploids. Generally, A-genome accessions outperformed D-genome cottons under salinity conditions. Allopolyploid accessions did not show significant differences from either diploid genomic group in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy per se need not be associated with increased salinity stress tolerance, and provide information relevant to utilization of the secondary Gossypium gene pool for breeding improved salt tolerance.This is the peer reviewed version of the following article: Dong, Yating, Guanjing Hu, Jingwen Yu, Sandi Win Thu, Corrinne E. Grover, Shuijin Zhu, and Jonathan F. Wendel. "Salt tolerance diversity in diploid and polyploid cotton (Gossypium) species." The Plant Journal (2019), which has been published in final form at doi: 10.1111/tpj.14580. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.</p
    corecore