80 research outputs found

    Metamaterials, Surface Waves, and Their Applications

    Get PDF
    Thesis advisor: Willie J. PadillaThe field of metamaterials (MMs) has garnered a great deal of attention ever since the experimental demonstration of negative refractive indexes. Such an exotic response stemmed from the engineering capability of MMs, as they can obtain almost any optical responses at any given frequency by carefully structuring the geometries. There are countless examples where MMs have posed promising results in tailoring free space radiation. However, their usage beyond this common platform is far less explored. For examples, surface electromagnetic waves, which offer great potentials for future device applications, could be an intriguing place for the further development of metamateirals. In this dissertation, we study various MM configurations where the interplay between surface waves and metamaterials has a significant impact on the device performance. Firstly, Chapter 1 introduces some fundamental concepts of metamaterials and surface electromagnetic waves, and outline the fabrication, experiments, and characterization details. In Chapter 2, we investigate whether the effective optical parameters of MMs have the exact physical meaning as those of natural substances. Two types of MM resonators are studied, and we found the thickness of the host matrix plays a crucial role in such a homogenization process. Next, we present a computational and experimental study of MMs in conjunction with a novel gigahertz/terahertz transmission line, in Chapter 3. By optimizing the coupling between the MMs and the signal, information can be encoded. Chapter 4 presents a study of designing an extremely subwavelength magnetic MM. By maximizing the effective inductance and capacitance of the structure, the final geometry obtains a strong magnetic resonance with the size of merely λₒ/2000, where λₒ is the resonant wavelength. A novel time-domain spectroscopic method is also proposed to determine the frequency-dependent permeability of the samples. In Chapter 5, we characterize two hidden channels of MM perfect absorbers : scattering and generation of surface electromagnetic waves. In particular, we unveil lossy surface waves are generated during the process resulting in an enhancement of angular absorbance. The study provides a new insight to the working principle of MMAs. In Chapter 6, we investigate complementary MM structures that exhibit strong extraordinary optical transmission with higher transmission efficiency. We discover the origin of the fundamental mode is irrelevant to the Bloch modes. Lastly, we summarize all achievements and give an outlook in Chapter 7.Thesis (PhD) — Boston College, 2014.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Physics

    Theory of Grey Systems and its Application in Electric Load Forecasting

    Get PDF
    Abstract-In this paper, the basic concept of the grey system theory and the modeling of the grey system are introduced briefly. Based on the analysis of the characteristics of GM(1,1) model, Unbiased GM(1,1) model is proposed here. The comparison of GM(1,1) model and unbiased GM(1,1) model is given, the results of comparison show that Unbiased GM(1,1) model is better than GM(1,1) model. In the final part of the paper, Unbiased GM(1,1) model is used to do electric load forecasting

    Topologically nontrivial and trivial zero modes in chiral molecules

    Full text link
    Recently, electron transport along chiral molecules has been attracting extensive interest and several intriguing phenomena have been reported in recent experiments, such as the emergence of zero-bias conductance peaks upon the adsorption of single-helical protein on superconducting films. Here, we study theoretically the electron transport through a two-terminal single-helical protein sandwiched between a superconducting electrode and a normal-metal one in the presence of a perpendicular magnetic field. As the proximity-induced superconductivity attenuates with the distance from superconducting media, the pairing potential along the helix axis of the single-helical protein is expected to decrease exponentially, which is characterized by the decay exponent λ\lambda and closely related to the experiments. Our results indicate that (i) a zero-bias conductance peak of 2e2/h2e^2/h appears at zero temperature and the peak height (width) decreases (broadens) with increasing temperature, and (ii) this zero-bias peak can split into two peaks, which are in agreement with the experiments [see, e.g., Nano Lett. 19, 5167 (2019)]. Remarkably, Majorana zero modes are observed in this protein-superconductor setup in a wide range of model parameters, as manifested by the Z2Z_2 topological invariant and the Majoroana oscillation. Interestingly, a specific region is demonstrated for decaying superconductivity, where topologically nontrivial and trivial zero modes coexist and the bandgap remains constant. With increasing the pairing potential, the topologically nontrivial zero modes will transform to the trivial ones without any bandgap closing-reopening, and the critical pairing potential of the phase transition attenuates exponentially with λ\lambda. Additionally, one of the two zero modes can be continuously shifted from one end of the protein toward the other end contacted by the normal-metal electrode.Comment: 11 pages, 6 figure

    Magnetic levitation of metamaterial bodies enhanced with magnetostatic surface resonances

    Full text link
    We propose that macroscopic objects built from negative-permeability metamaterials may experience resonantly enhanced magnetic force in low-frequency magnetic fields. Resonant enhancement of the time-averaged force originates from magnetostatic surface resonances (MSR) which are analogous to the electrostatic resonances of negative-permittivity particles, well known as surface plasmon resonances in optics. We generalize the classical problem of MSR of a homogeneous object to include anisotropic metamaterials, and consider the most extreme case of anisotropy where the permeability is negative in one direction but positive in the others. It is shown that deeply subwavelength objects made of such indefinite (hyperbolic) media exhibit a pronounced magnetic dipole resonance that couples strongly to uniform or weakly inhomogeneous magnetic field and provides strong enhancement of the magnetic force, enabling applications such as enhanced magnetic levitation.Comment: 19 pages, 5 figure

    Response of the root morphological structure of Fokienia hodginsii seedlings to competition from neighboring plants in a heterogeneous nutrient environment

    Get PDF
    IntroductionCritical changes often occur in Fokienia hodginsii seedlings during the process of growth owing to differences in the surrounding environment. The most common differences are heterogeneous nutrient environments and competition from neighboring plants.MethodsIn this study, we selected one-year-old, high-quality Fokienia hodginsii seedlings as experimental materials. Three planting patterns were established to simulate different competitive treatments, and seedlings were also exposed to three heterogeneous nutrient environments and a homogeneous nutrient environment (control) to determine their effect on the root morphology and structure of F. hodginsii seedlings.ResultsHeterogeneous nutrient environments, compared with a homogeneous environment, significantly increased the dry matter accumulation and root morphology indexes of the root system of F. hodginsii, which proliferated in nutrient-rich patches, and the P heterogeneous environment had the most significant enhancement effect, with dry matter accumulation 70.2%, 7.0%, and 27.0% higher than that in homogeneous and N and K heterogeneous environments, respectively. Homogeneous environments significantly increased the specific root length and root area of the root system; the dry matter mass and morphological structure of the root system of F. hodginsii with a heterospecific neighbor were higher than those under conspecific neighbor and single-plant treatments, and the root area of the root system under the conspecific neighbor treatment was higher than that under the heterospecific neighbor treatment, by 20% and 23%, respectively. Moreover, the root system under heterospecific neighbor treatment had high sensitivity; the heterogeneous nutrient environment increased the mean diameter of the fine roots of the seedlings of F. hodginsii and the diameter of the vascular bundle, and the effect was most significant in the P heterogeneous environment, exceeding that in the N and K heterogeneous environments. The effect was most significant in the P heterogeneous environment, which increased fine root diameter by 20.5% and 10.3%, respectively, compared with the homogeneous environment; in contrast, the fine root vascular ratio was highest in the homogeneous environment, and most of the indicators of the fine root anatomical structure in the nutrient-rich patches were of greater values than those in the nutrient-poor patches in the different heterogeneous environments; competition promoted most of the indicators of the fine root anatomical structure of F. hodginsii seedlings. According a principal component analysis (PCA), the N, Pm and K heterogeneous environments with heterospecific neighbors and the P heterogeneous environment with a conspecific neighbor had higher evaluation in the calculation of eigenvalues of the PCA.DiscussionThe root dry matter accumulation, root morphology, and anatomical structure of F. hodginsii seedlings in the heterogeneous nutrient environment were more developed than those in the homogeneous nutrient environment. The effect of the P heterogeneous environment was the most significant. The heterospecific neighbor treatment was more conducive to the expansion and development of root morphology of F. hodginsii seedlings than were the conspecific neighbor and single-plant treatments

    Preparation of g-C3N4/ZIF-8/PVDF–modified Li anode for all-solid-state Li metal batteries

    Get PDF
    All-Solid-state lithium metal batteries (ASSLMBs) are promising next-generation energy storage devices. However, the formation of lithium (Li) dendrites in ASSLMBs limits their applications. In this study, we used an inorganic/organic mixture of graphitic carbon nitride (g-C3N4), zinc-based Zeolitic Imidazolate Framework-8 (ZIF-8), and poly(vinylidene difluoride) (PVDF)—g-C3N4/ZIF-8/PVDF (g-CNZP)—to modify the surface of a lithium metal anode (LMA). The 2032-type coin cell was assembled based on a lithium Nafion (LiNf)–coated NCM811 (denoted as LiNf@NCM811) cathode, inorganic/organic mixture modified Li metal anode (LMA) (denoted g-CNZP@Li), and a LiNf-coated Li6.05Ga0.25La3Zr2O11.8F0.2 ([email protected]) filler in bilayer hybrid solid electrolyte (Bi-HSE). The coin cell was charged between 2.8 and 4.2 V at 0.5C exhibited an initial specific discharge capacity of 134.45 mAh g−1 and retained 86.1 % of its capacity after 280 cycles at 30 °C. The average coulombic efficiency of the cell was approximately 99.8 %. Furthermore, the high-voltage (2.8–4.5 V, at a rate of 0.2C) result also delivered an initial specific discharge capacity of 194.3 mAh g−1 and, after 100 cycles, maintained 81.8 % of its initial capacity at room temperature. The presence of the nanosheet/nanoparticle composite coating material on the LMA surface suppressed Li dendrite growth and enhanced the compatibility between the LMA and Bi-HSE membrane. In addition, the in-situ formation of Li3N on the solid electrolyte interface (SEI) layer improved the ionic conductivity and ensured intimate interfacial contact during cycling. Therefore, these novel bi-layered fabrication strategies for obtaining hybrid/composite solid electrolyte membranes and modifying LMA surfaces via 2D g-C3N4 material with ZIF-8 MOFs and PVDF composites appear to have applicability in the preparation of very safe high-voltage cathodes for ASSLMBs

    Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Capsicum annuum L.

    Get PDF
    The CCCH zinc finger gene family encodes a class of proteins that can bind to both DNA and RNA, and an increasing number of studies have demonstrated that the CCCH gene family plays a key role in growth and development and responses to environmental stress. Here, we identified 57 CCCH genes in the pepper (Capsicum annuum L.) genome and explored the evolution and function of the CCCH gene family in C. annuum. Substantial variation was observed in the structure of these CCCH genes, and the number of exons ranged from one to fourteen. Analysis of gene duplication events revealed that segmental duplication was the main driver of gene expansion in the CCCH gene family in pepper. We found that the expression of CCCH genes was significantly up-regulated during the response to biotic and abiotic stress, especially cold and heat stress, indicating that CCCH genes play key roles in stress responses. Our results provide new information on CCCH genes in pepper and will aid future studies of the evolution, inheritance, and function of CCCH zinc finger genes in pepper

    Energy evolution mechanism during rockburst development in structures of surrounding rocks of deep rockburst-prone roadways in coal mines

    Get PDF
    Influenced by the deep high-stress environment, geological structures, and mining disturbance in coal mines, the frequency of rockburst disasters in roadways is increasing. This research analyzed energy evolution characteristics during rockburst development in the elastic bearing zone and energy conversion in the plastic failure zone. The critical energy criteria for structural instability of roadway surrounding rocks were deduced. Numerical software was also applied to simulate the energy evolution during rockburst development in surrounding rocks of rockburst-prone roadways under conditions of different mining depths and coal pillar widths. The occurrence mechanism of rockburst deep in coal mines was analyzed from the perspective of energy in structures of deep roadway surrounding rock in coal mines. The research results show that the critical energy criteria are closely related to the elastic strain energy stored in deep roadway surrounding rocks and the energy absorbed by support systems. The impact energy in roadways is directly proportional to the square of the stress concentration factor k. Moreover, as the mining depth increases, the location of the peak point of maximum energy density gradually shifts to coal ahead of the working face. The larger the mining depth is, the more significantly the energy density is influenced by advanced abutment pressure of the working face and the wider the affected area is. With the increment of the coal pillar width, the distance from the peak point of energy density to the roadway boundary enlarges abruptly at first and then slowly, and the critical coal pillar width for gentle change in the distance is 30 m. Changes in the peak elastic energy density in coal pillars with the coal pillar width can be divided into four stages: the slow increase stage, abrupt increase stage, abrupt decrease stage, and slow decrease stage. The elastic energy density is distributed asymmetrically in deep roadway surrounding rocks in coal mines. Under the action of structures of roadway surrounding rocks, energy evolution in these structures differs greatly during rockburst development under conditions of different coal pillar widths. This research provides an important theoretical basis for the support of rockburst-prone roadways during deep coal mining

    [Invited] THz metamaterials and plasmonics

    No full text
    International audienc
    • …
    corecore