1,812 research outputs found

    Generation of short hard X-ray pulses of tailored duration using a M\"ossbauer source

    Full text link
    We theoretically investigate a scheme for generations of single hard X-ray pulses of controllable duration in the range of 1 ns - 100 ns from a radioactive M\"ossbauer source. The scheme uses a magnetically perturbed 57^{57}FeBO3_3 crystal illuminated with recoilless 14.4 keV photons from a radioisotope 57^{57}Co nuclide. Such compact X-ray source is useful for the extension of quantum optics to 10 keV energy scale which has been spotlighted in recent years. So far, experimental achievements are mostly performed in synchrotron radiation facilities. However, tabletop and portable hard X-ray sources are still limited for time-resolved measurements and for implementing coherent controls over nuclear quantum optics systems. The availability of compact hard X-ray sources may become the engine to apply schemes of quantum information down to the subatomic scale. We demonstrate that the present method is versatile and provides an economic solution utilizing a M\"ossbauer source to perform time-resolved nuclear scattering, to produce suitable pulses for photon storage and to flexibly generate X-ray single-photon entanglement.Comment: 8 pages, 6 figure

    Synthesis and Characterization of Bowl-Like Single-Crystalline BaTiO3 Nanoparticles

    Get PDF
    Novel bowl-like single-crystalline BaTiO(3) nanoparticles were synthesized by a simple hydrothermal method using Ba(OH)(2)·8H(2)O and TiO(2) as precursors. The as-prepared products were characterized by XRD, Raman spectroscopy, SEM and TEM. The results show that the bowl-like BaTiO(3) nanoparticles are single-crystalline and have a size about 100–200 nm in diameter. Local piezoresponse force measurements indicate that the BaTiO(3) nanoparticles have switchable polarization at room temperature. The local effective piezoelectric coefficient [Image: see text] is approximately 28 pm/V

    Executable Knowledge Base for Virtual Chat System

    Get PDF
    A virtual chat system enables the end user to interact with knowledge base by chatting with a virtual assistant. Besides knowledge article, a virtual assistant can also perform automation flows such as restart a virtual machine, reset the password for a PC. In many virtual chat systems, AIML (Artificial Intelligence Markup Language) is used to train the virtual agent to interact with human beings. It is also possible to integrate knowledge system and automation flow system with AIML interpreter to quickly empower virtual assistances with various domain knowledge. The disclosure provides a method to convert or link an automation flow to virtual agent understandable and executable format and enable them to perform and interact seamlessly with the users, the knowledge base system and the automation system

    Discovery and regulation of chiral magnetic solitons: Exact solution from Landau-Lifshitz-Gilbert equation

    Full text link
    The Landau-Lifshitz-Gilbert (LLG) equation has emerged as a fundamental and indispensable framework within the realm of magnetism. However, solving the LLG equation, encompassing full nonlinearity amidst intricate complexities, presents formidable challenges. In this context, we develop a precise mapping through geometric representation, establishing a direct linkage between the LLG equation and an integrable generalized nonlinear Schr\"odinger equation. This novel mapping provides accessibility towards acquiring a great number of exact spatiotemporal solutions. Notably, exact chiral magnetic solitons, critical for stability and controllability in propagation with and without damping effects are discovered. Our formulation provides exact solutions for the long-standing fully nonlinear problem, facilitating practical control through spin current injection in magnetic memory applications.Comment: main text:5 pages, 4 figures, supplementary materials:5 pages, 2 figure

    Targeted profiling of chlorinated transformation products and the parent micropollutants in the aquatic environment: A comparison between two coastal cities

    Get PDF
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances
    • …
    corecore