457 research outputs found

    Transferring speech-generic and depression-specific knowledge for Alzheimer's disease detection

    Full text link
    The detection of Alzheimer's disease (AD) from spontaneous speech has attracted increasing attention while the sparsity of training data remains an important issue. This paper handles the issue by knowledge transfer, specifically from both speech-generic and depression-specific knowledge. The paper first studies sequential knowledge transfer from generic foundation models pretrained on large amounts of speech and text data. A block-wise analysis is performed for AD diagnosis based on the representations extracted from different intermediate blocks of different foundation models. Apart from the knowledge from speech-generic representations, this paper also proposes to simultaneously transfer the knowledge from a speech depression detection task based on the high comorbidity rates of depression and AD. A parallel knowledge transfer framework is studied that jointly learns the information shared between these two tasks. Experimental results show that the proposed method improves AD and depression detection, and produces a state-of-the-art F1 score of 0.928 for AD diagnosis on the commonly used ADReSSo dataset.Comment: 8 pages, 4 figures. Accepted by ASRU 202

    Linearly Sweeping Leaky-Wave Antenna with High Scanning Rate

    Get PDF
    Leaky wave antenna is known as a type of travelling antenna with dispersive frequency responses, which has found important applications in modern communication, imaging and radar systems. The beam scanning rate is a key consideration in some applications, since it can minimize the bandwidth requirement of the system, during the scanning in broad angular regions. However, the sweeping linearity, namely the scanning angular range per unit frequency, is seldom taken into account at the same time in the published literature. In this article, we propose a waveguide-type leaky-wave antenna working from 11.1 GHz to 12 GHz. By loading periodical pins with glide symmetry in the waveguide, it is possible to manipulate the dispersion properties of the fast wave mode, hereby giving rise to a good balance between the scanning rate and sweeping linearity. This scenario has been validated by numerical simulation and experiment with excellent agreement. The measurement results reveal that the scanning angles have been increased to range from 16.7° ~67.5° varying the frequency from 11.1 to 12.1 GHz. The relative average scanning rate is enhanced up to 589.3°, with high sweeping linearity

    Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells

    Get PDF
    Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10(−10) cm(2)/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures

    Simultaneous Conversion of Polarization and Frequency via Time‐Division‐Multiplexing Metasurfaces

    Get PDF
    AbstractMetasurfaces are artificially engineered two‐dimensional materials composed of sub‐wavelength meta‐atoms, which have shown unprecedented capabilities in manipulating the amplitude, phase, frequency, and polarization states of electromagnetic waves. Specifically, polarization control can be attained via suitable anisotropic, linear, and time‐invariant designs, while frequency conversion is realized via nonlinear or time‐varying platforms. Simultaneous manipulations of polarization and frequency would be of considerable practical interest in many application scenarios, but remain unattainable with current approaches. Here, a time‐division‐multiplexing metasurface is proposed to realize the simultaneous conversion of polarization and frequency. The platform relies on time‐modulated polarization switches and, by varying the duty cycle and time delays of the polarization channels, can arbitrarily rotate the polarization at the central frequency of operation, and synthesize various polarization states at selected harmonic frequencies. Theoretical predictions are validated via measurements on a prototype operating at microwave frequencies, providing the first experimental evidence of simultaneous polarization and frequency conversions via time‐division‐multiplexing metasurfaces. The outcomes open a new pathway in manipulating the electromagnetic waves via time‐varying metasurfaces, and may be of interest for a broad variety of applications in scenarios ranging from polarization imaging to quantum optics

    Chitosan Grafted With β-Cyclodextrin: Synthesis, Characterization, Antimicrobial Activity, and Role as Absorbefacient and Solubilizer

    Get PDF
    We synthesized chitosan grafted with β-cyclodextrin (CD-g-CS) from mono-6-deoxy-6-(p-toluenesulfonyl)-β-cyclodextrin and chitosan. Two different amounts of immobilized β-cyclodextrin (β-CD) on CD-g-CS (QCD: 0.643 × 103 and 0.6 × 102 μmol/g) were investigated. The results showed that the amino contents of CD-g-CS with QCD = 0.643 × 103 and 0.6 × 102 μmol/g were 6.34 ± 0.072 and 9.41 ± 0.055%, respectively. Agar diffusion bioassay revealed that CD-g-CS (QCD = 0.6 × 102 μmol/g) was more active against Staphylococcus xylosus and Escherichia coli than CD-g-CS (QCD = 0.643 × 103 μmol/g). Cell membrane integrity tests and scanning electron microscopy observation revealed that the antimicrobial activity of CD-g-CS was attributed to membrane disruption and cell lysis. Uptake tests showed that CD-g-CS promoted the uptake of doxorubicin hydrochloride by S. xylosus, particularly for CD-g-CS with QCD = 0.6 × 102 μmol/g, and the effect was concentration dependent. CD-g-CS (QCD = 0.6 × 102 and 0.643 × 103 μmol/g) also improved the aqueous solubilities of sulfadiazine, sulfamonomethoxine, and sulfamethoxazole. These findings provide a clear understanding of CD-g-CS and are of great importance for reducing the dosage of antibiotics and antibiotic residues in animal-derived foods. The results also provide a reliable, direct, and scientific theoretical basis for its wide application in the livestock industry

    Effects of Radix Astragali and Its Split Components on Gene Expression Profiles Related to Water Metabolism in Rats with the Dampness Stagnancy due to Spleen Deficiency Syndrome

    Get PDF
    Radix Astragali (RA) with slight sweet and warm property is a significant “qi tonifying” herb; it is indicated for the syndrome of dampness stagnancy due to spleen deficiency (DSSD). The purpose of this research was to explore effects of RA and its split components on gene expression profiles related to water metabolism in rats with the DSSD syndrome for identifying components representing property and flavor of RA. The results indicated that RA and its split components, especially polysaccharides component, significantly increased the body weight and the urine volume and decreased the water load index of model rats. Our data also indicated differentially expressed genes (DEGs) related to water metabolism involved secretion, ion transport, water homeostasis, regulation of body fluid levels, and water channel activity; the expression of AQP1, AQP3, AQP4, AQP5, AQP6, and AQP8 was improved; calcium, cAMP, MAPK, PPAR, AMPK, and PI3K-Akt signaling pathway may be related to water metabolism. In general, results indicate that RA and its split components could promote water metabolism in rats with the DSSD syndrome via regulating the expression of AQPs, which reflected sweet-warm properties of RA. Effects of the polysaccharides component are better than others
    corecore