2,066 research outputs found

    IsaB Inhibits Autophagic Flux to Promote Host Transmission of Methicillin-Resistant Staphylococcus aureus.

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a major nosocomial pathogen that is widespread in both health-care facilities and in the community at large, as a result of direct host-to-host transmission. Several virulence factors are associated with pathogen transmission to naive hosts. Immunodominant surface antigen B (IsaB) is a virulence factor that helps Staphylococcus aureus to evade the host defense system. However, the mechanism of IsaB on host transmissibility remains unclear. We found that IsaB expression was elevated in transmissible MRSA. Wild-type isaB strains inhibited autophagic flux to promote bacterial survival and elicit inflammation in THP-1 cells and mouse skin. MRSA isolates with increased IsaB expression showed decreased autophagic flux, and the MRSA isolate with the lowest IsaB expression showed increased autophagic flux. In addition, recombinant IsaB rescued the virulence of the isaB deletion strain and increased the group A streptococcus (GAS) virulence in vivo. Together, these results reveal that IsaB diminishes autophagic flux, thereby allowing MRSA to evade host degradation. These findings suggest that IsaB is a suitable target for preventing or treating MRSA infection

    Modeling Anti-HIV-1 HSPC-Based Gene Therapy in Humanized Mice Previously Infected with HIV-1.

    Get PDF
    Investigations of anti-HIV-1 human hematopoietic stem/progenitor cell (HSPC)-based gene therapy have been performed by HIV-1 challenge after the engraftment of gene-modified HSPCs in humanized mouse models. However, the clinical application of gene therapy is to treat HIV-1-infected patients. Here, we developed a new method to investigate an anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. First, humanized mice were infected with HIV-1. When plasma viremia reached >107 copies/mL 3 weeks after HIV-1 infection, the mice were myeloablated with busulfan and transplanted with anti-HIV-1 gene-modified CD34+ HSPCs transduced with a lentiviral vector expressing two short hairpin RNAs (shRNAs) against CCR5 and HIV-1 long terminal repeat (LTR), along with human thymus tissue under the kidney capsule. Anti-HIV-1 vector-modified human CD34+ HSPCs successfully repopulated peripheral blood and lymphoid tissues in HIV-1 previously infected humanized mice. Anti-HIV-1 shRNA vector-modified CD4+ T lymphocytes showed selective advantage in HIV-1 previously infected humanized mice. This new method will be useful for investigations of anti-HIV-1 gene therapy when testing in a more clinically relevant experimental setting

    The expression of hephaestine during focal cerebral ischemia in rats

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    State Estimation and Optimal Control of Four-Tank System with Stochastic Approximation Approach

    Get PDF
    This study aims to optimally control the level of a four-tank system at the steady state in the random disturbance environment using the stochastic approximation (SA) approach. Firstly, the stochastic optimal control problem of an equivalent discrete-time is introduced, where the voltages to the pumps are the control inputs. By minimizing the sum of squared errors, the liquid levels are estimated. Then, first-order necessary conditions are derived by defining the Hamiltonian function. Thus, the optimal voltages are calculated based on the estimated liquid levels to update the gradient of the cost function. Finally, for illustration, parameters in the system are considered and a simulation is conducted. The simulation results show that the state estimation and control law design can perform well, and the liquid levels are addressed along the steady state. In conclusion, the applicability of the SA approach for handling a four-tank system with random disturbances is demonstrated

    The K526R substitution in viral protein ​PB2 enhances the effects of E627K on influenza virus replication

    Get PDF
    Host-adaptive strategies, such as the E627K substitution in the ​PB2 protein, are critical for replication of avian influenza A viruses in mammalian hosts. Here we show that mutation ​PB2-K526R is present in some human H7N9 influenza isolates, in nearly 80% of H5N1 human isolates from Indonesia and, in conjunction with E627K, in almost all seasonal H3N2 viruses since 1970. Polymerase complexes containing ​PB2-526R derived from H7N9, H5N1 or H3N2 viruses exhibit increased polymerase activity. ​PB2-526R also enhances viral transcription and replication in cells. In comparison with viruses carrying 627K, H7N9 viruses carrying both 526R and 627K replicate more efficiently in mammalian (but not avian) cells and in mouse lung tissues, and cause greater body weight loss and mortality in infected mice. ​PB2-K526R interacts with nuclear export protein and our results suggest that it contributes to enhance replication for certain influenza virus subtypes, particularly in combination with 627K.published_or_final_versio

    Bioequivalence Evaluation of Two Formulations of Celecoxib 200 mg Capsules in Healthy volunteers by using a validated LC/MS/MS method

    Get PDF
    The bioequivalence study to compare a new formulation of celecoxib to its reference formulation was designed as an open-label, randomized, single-dose, two-way crossover, comparative bioavailability study by using a validated LC/MS/MS method. In order to determine the plasma concentrations of celecoxib, a sensitive LC/MS/MS method was developed. The method was validated to possess adequate specificity, linearity, precision, accuracy and stability. The linearity of calibration curve was assessed between the concentration intervals (5–2000 ng/mL) with a correlation coefficient over 0.999. Regarding pharmacokinetic investigation, the mean celecoxib AUC0-t values from the test and reference drug formulations were 7360.44 ± 1714.14 h•ng/mL and 7267.48 ± 2077.68 h•ng/mL, respectively, and the corresponding AUC0-∞ values were 8197.45 ± 2040.31 h•ng/mL and 7905.54 ± 2286.12 h•ng/mL, respectively. The Cmax of the test and reference drugs was 705.30 ± 290.63 ng/mL and 703.86 ± 329.91 ng/mL, respectively, and the corresponding Tmax was 3.4 ± 1.6 h and 2.9 ± 1.4 h. Lastly, the T1/2 values of the test and reference drugs were 13.9 ± 7.9 h and 12.9 ± 7.7 h, respectively. The 90% confidence intervals for AUC0-t, AUC0-∞, and Cmax were 97.00-108.85, 98.01-112.09, and 93.20-116.13, respectively, satisfying the bioequivalence criteria of 80-125% range. In conclusion, these results demonstrated that the bioequivalence of two formulations of celecoxib was established successfully by utilizing present developed LC/MS/MS method
    corecore