2,886 research outputs found

    Characterization of Solid-State Drug Polymorphs and Real-Time Evaluation of Crystallization Process Consistency by Near-Infrared Spectroscopy

    Get PDF
    Herein, we aimed to develop a strategy for evaluating the consistency of pharmaceutically important crystallization processes in real time, focusing on two typical cases of polymorphism. Theoretical analysis using a combination of 13C solid-state nuclear magnetic resonance spectroscopy with other polymorphism analysis techniques identified a number of marker signals, the changes of which revealed the presence of two or more structural orientations (lattices and/or molecular conformations) in both cefazolin sodium pentahydrate (α-CEZ-Na) and cephathiamidine (CETD). The proportions of these forms were shown to be batch-dependent and were defined as critical quality attributes (CQAs) to evaluate process consistency. Subsequently, real-time analysis by chemometrics-assisted near-infrared spectroscopy (NIR) was used to obtain useful information corresponding to CQAs. The pretreated spectra of representative samples were transformed by first derivative and vector normalization methods and used to calculate standard deviations at each wavelength and thus detect significant differences. As a result, vibrational responses of H2O, CH3, and CH2 moieties (at 5,280, 4,431, and 4,339 cm−1, respectively) were shown to be sensitive to the CQAs of α-CEZ-Na, which allowed us to establish a highly accurate discrimination model. Moreover, signals of H2O, CONH, and COOH moieties (at 5,211, 5,284, and 5,369 cm−1, respectively) played the same role in the case of CETD, as confirmed by theoretical results. Thus, we established a technique for the rapid evaluation of crystallization process consistency and deepened our understanding of crystallization behavior by using NIR in combination with polymorphism analysis techniques

    Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea

    Get PDF
    BACKGROUND: This study aims to isolate the α-glucosidase inhibitory compounds from mulberry leaves (Morus atropurpurea Roxb., Moraceae) and to develop an analytical method for quantification of the compounds. METHODS: Four flavonoids, rutin (1), isoquercetin (2), kaempferol-3-O-rutinoside (3) and astragalin (4), were isolated by column chromatography from mulberry leaf water extracts (MWE). The α-glucosidase inhibitory activities of MWE and the four isolated compounds were evaluated by a microplate-based in vitro assay. The content of the isolated flavonoids in M. atropurpurea leaves purchased from different local herbal stores or collected in different locations was determined by high performance liquid chromatography. RESULTS: The four flavonoids (1–4) showed α-glucosidase inhibitory activities, with rutin (1) and astragalin (4) showing high α-glucosidase inhibitory activities (IC(50) values of 13.19 ± 1.10 and 15.82 ± 1.11 μM, respectively). The total contents of the four flavonoids were different among eight samples examined, ranging from 4.34 mg/g to 0.53 mg/g. CONCLUSIONS: The four flavonoids in M. atropurpurea leaves could inhibit α-glucosidase activity

    Graphene Field-Effect Transistor for Terahertz Modulation

    Get PDF
    The real-world applications of terahertz (THz) technology necessitate versatile adaptive optical components, for example, modulators. In this chapter, we begin with a brief review on different techniques for THz modulation. After that, we introduce the extraordinary features of graphene along with its advantages and disadvantages as channel materials for field effect transistor (FET). We then discuss two types of graphene FET-based THz modulators, one is rigid and another is flexible. The feasibility of the high-quality THz modulators with different graphene FET structures has been successfully demonstrated. It is observed that by tuning the carrier concentration of graphene by electrical gating, the THz modulation can be obtained with relatively large modulation depth, broad width band, and moderate speed. This chapter helps the reader in obtaining guidelines for the proper choice of a specific structure for THz modulator with graphene FET

    Charge-dependent transverse momentum and its impact on the search for the chiral magnetic wave

    Full text link
    The chiral magnetic wave (CMW) is sought using the charge asymmetry (AchA_{\rm ch}) dependence of anisotropic flow in heavy-ion collisions. The charge dependent transverse momentum (pTp_{\rm T}), however, could play a role as a background. With the string fragmentation models, including PYTHIA, we demonstrate the origin of the Ach−pTA_{\rm ch}-p_{\rm T} correlation and its connection with the local charge conservation (LCC). The impact of Ach−pTA_{\rm ch}-p_{\rm T} and its behavior in varied kinematic windows are also discussed. This study provides more insights for the search for the CMW and comprehending the collective motion of the quark-gluon plasma.Comment: 6 pages, 6 figure

    Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    Get PDF
    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation

    Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae

    Get PDF
    AbstractThe larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose–response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone

    Genomic Inference of the Metabolism and Evolution of the Archaeal Phylum Aigarchaeota

    Get PDF
    Microbes of the phylum Aigarchaeota are widely distributed in geothermal environments, but their physiological and ecological roles are poorly understood. Here we analyze six Aigarchaeota metagenomic bins from two circumneutral hot springs in Tengchong, China, to reveal that they are either strict or facultative anaerobes, and most are chemolithotrophs that can perform sulfide oxidation. Applying comparative genomics to the Thaumarchaeota and Aigarchaeota, we find that they both originated from thermal habitats, sharing 1154 genes with their common ancestor. Horizontal gene transfer played a crucial role in shaping genetic diversity of Aigarchaeota and led to functional partitioning and ecological divergence among sympatric microbes, as several key functional innovations were endowed by Bacteria, including dissimilatory sulfite reduction and possibly carbon monoxide oxidation. Our study expands our knowledge of the possible ecological roles of the Aigarchaeota and clarifies their evolutionary relationship to their sister lineage Thaumarchaeota
    • …
    corecore