182 research outputs found

    Self-ignition of hydrogen–nitrogen mixtures during high-pressure release into air

    Get PDF
    This paper demonstrates experimental and numerical study on spontaneous ignition of H2–N2 mixtures during high-pressure release into air through the tubes of various diameters and lengths. The mixtures included 5% and 10% (vol.) N2 addition to hydrogen being at initial pressure in range of 4.3–15.9 MPa. As a point of reference pure hydrogen release experiments were performed with use of the same experimental stand, experimental procedure and extension tubes. The results showed that N2 addition may increase the initial pressure necessary to self-ignite the mixture as much as 2.12 or 2.85 – times for 5% and 10% N2 addition, respectively. Additionally, simulations were performed with use of Cantera code (0-D) based on the ideal shock tube assumption and with the modified KIVA3V code (2-D) to establish the main factors responsible for ignition and sustained combustion during the release

    An improved PaSR-based soot model for turbulent fires

    Get PDF
    The extension of the laminar smoke point based approach to turbulent combustion using the partially stirred reactor (PaSR) concept proposed by Chen et al. ; has been further improved to overcome the limitation in the formulations of Chen et al. ; which assumed infinitely fast soot oxidation chemistry and constant soot formation characteristic time. In the PaSR approach, each computational cell is split into two zones: the reacting zone and the non-reacting zone. Soot formation and oxidation are assumed to take place at finite rates in the reacting zone and computed from the corresponding laminar rates and the mass fractions for soot formation and oxidation, which are evaluated in each computational cell from the characteristic time scales for turbulent mixing, soot formation and oxidation. Since soot would be produced in not only the fine structures but also surrounding fluids in the Eddy-Dissipation-Concept (EDC) model, the average field parameters between the fine structure and surrounding fluid are employed instead of those Favre-averaged values in Chen et al.’s soot formation model. The newly extended model has been implemented in FireFOAM, a large eddy simulation (LES) based solver for fire simulation based on the open source CFD code OpenFOAM®. Numerical simulations of a 30 cm diameter heptane and toluene pool fires tested by Klassen and Gore [29] were performed for validation. The predicted soot volume fraction and temperature have achieved improved agreement with the experimental measurements in comparison with that of Chen et al. ; , demonstrating the potential of the improved PaSR-based soot model for fire applications

    Further development and validation of CO2FOAM for the atmospheric dispersion of accidental releases from carbon dioxide pipelines

    Get PDF
    This paper reports on the further development and validation of CO2FOAM, a dedicated computational fluid dynamics solver for the atmospheric dispersion of Carbon Dioxide (CO2) from accidental pipeline releases. The code has been developed within the framework of the open source CFD code OpenFOAM® (OpenCFD, 2014). Its earlier version used the homogeneous equilibrium method for fully compressible two-phase flow. Validation of the code against CO2 releases through vertical vent pipes and horizontal shock tubes was previously reported by Wen et al. (2013). In the present study, the homogeneous relaxation model has been implemented as it is more suited to account for the presence of solid CO2 within the releases. For validation, the enhanced CO2FOAM has been used to predict CO2 dispersion in a range of full scale tests within the dense phase CO2 PipeLine TRANSportation (COOLTRANS) research programme (Cooper, 2012) funded by National Grid. The test case used in the present study involved a puncture in a buried pipe. The experimental measurements were supplied to the authors after the predictions were completed and submitted to National Grid. Hence, the validation reported here is indeed ‘blind’. The validated model has also been used to study the effect of a commercial building located downstream from the release location

    Validation of geometry modelling approaches for offshore gas dispersion simulations

    Get PDF
    Computational Fluid Dynamics (CFD) codes are widely used for gas dispersion studies on offshore installations. The majority of these codes use single-block Cartesian grids with the porosity/distributed-resistance (PDR) approach to model small geometric details. Computational cost of this approach is low since small-scale obstacles are not resolved on the computational mesh. However, there are some uncertainties regarding this approach, especially in terms of grid dependency and turbulence generated from complex objects. An alternative approach, which can be implemented in general-purpose CFD codes, is to use body-fitted grids for medium to large-scale objects whilst combining multiple small-scale obstacles in close proximity and using porous media models to represent blockage effects. This approach is validated in this study, by comparing numerical predictions with large-scale gas dispersion experiments carried out in DNV GL's Spadeadam test site. Gas concentrations and gas cloud volumes obtained from simulations are compared with measurements. These simulations are performed using the commercially available ANSYS CFX, which is a general-purpose CFD code. For comparison, further simulations are performed using CFX where small-scale objects are explicitly resolved. The aim of this work is to evaluate the accuracy and efficiency of these different geometry modelling approaches

    Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode

    Get PDF
    Insight of the thermal characteristics and potential flame spread over lithium-ion battery (LIB) modules is important for designing battery thermal management system and fire protection measures. Such thermal characteristics and potential flame spread are also dependent on the different anode and cathode materials as well as the electrolyte. In the present study, thermal behavior and flame propagation over seven 50 A h Li(Ni1/3Mn1/3Co1/3)O2/Li4Ti5O12 large format LIBs arranged in rhombus and parallel layouts were investigated by directly heating one of the battery units. Such batteries have already been used commercially for energy storage while relatively little is known about its safety features in connection with potential runaway caused fire and explosion hazards. It was found in the present heating tests that fire-impingement resulted in elevated temperatures in the immediate vicinity of the LIBs that were in the range of between 200 °C and 900 °C. Such temperature aggravated thermal runaway (TR) propagation, resulting in rapid temperature rise within the battery module and even explosions after 20 min of “smoldering period”. The thermal runaway and subsequent fire and explosion observed in the heating test was attributed to the violent reduction of the cathode material which coexisted with the electrolyte when the temperature exceeded 260 °C. Separate laboratory tests, which measured the heat and gases generation from samples of the anode and cathode materials using C80 calorimeter, provided insight of the physical-chemistry processes inside the battery when the temperature reaches between 30 °C and 300 °C. The self-accelerating decomposition temperature of the cell, regarded as the critical temperature to trigger TR propagation, was calculated as 126.1 and 139.2 °C using the classical Semenov and Frank-Kamenetskii models and the measurements of the calorimeter with the samples. These are consistent with the measured values in the heating tests in which TR propagated. The events leading to the explosions in the test for the rhombus layout was further analyzed and two possible explanations were postulated and analyzed based on either internal catalytic reactions or Boiling Liquid Expansion Vapor Explosion (BLEVE)

    PPAR? Downregulation by TGF in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis

    Get PDF
    The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)- dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a ''TGF-ß responsive gene signature'' in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis. © 2010 Wei et al

    Circulating oncometabolite 2-hydroxyglutarate (2HG) as a potential biomarker for isocitrate dehydrogenase (IDH1/2) mutant cholangiocarcinoma

    Get PDF
    Isocitrate dehydrogenase (IDH) enzymes catalyze the decarboxylation of isocitrate to alpha-ketoglutarate. IDH1/2 mutations preferentially convert αKG to R-2-hydroxyglutarate (R2HG), resulting in R2HG accumulation in tumor tissues. We investigated circulating 2-hydroxyglutate (2HG) as potential biomarkers for patients with IDH-mutant (IDHmt) cholangiocarcinoma (CCA). R2HG and S-2-hydroxyglutarate (S2HG) levels in blood and tumor tissues were analyzed in a discovery cohort of IDHmt glioma and CCA patients. Results were validated in cohorts of CCA and clear cell renal cell carcinoma (ccRCC) patients. The R2HG/S2HG ratio (rRS) was significantly elevated in tumor tissues, but not in blood for IDHmt glioma patients, while circulating rRS was elevated in IDHmt CCA patients. There were overlap distributions of circulating R2HG and total 2HG (t2HG) in both IDHmt and wild-type (IDHwt) CCA patients, while there was minimal overlap in rRS values between IDHmt and IDHwt CCA patients. Using the rRS cut-off value of 1.5, the sensitivity of rRS was 90% and specificity was 96.8%. Circulating rRS is significantly increased in IDHmt CCA patients compare to IDHwt CCA patients. Circulating rRS is a sensitive and specific surrogate biomarker for IDH1/2 mutations in CCA. It can potentially be used as a tool for monitoring IDH-targeted therapy

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin

    Get PDF
    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters
    corecore