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Abstract 

The extension of the laminar smoke point based approach to turbulent combustion using the 

partially stirred reactor (PaSR) concept proposed by Chen et al. [24,25] has been further improved to 

overcome the limitation in the formulations of Chen et al. [24,25] which assumed infinitely fast soot 

oxidation chemistry and constant soot formation characteristic time. In the PaSR approach, each 

computational cell is split into two zones: the reacting zone and the non-reacting zone. Soot formation 

and oxidation are assumed to take place at finite rates in the reacting zone and computed from the 

corresponding laminar rates and the mass fractions for soot formation and oxidation, which are 

evaluated in each computational cell from the characteristic time scales for turbulent mixing, soot 

formation and oxidation. Since soot would be produced in not only the fine structures but also 

surrounding fluids in the Eddy-Dissipation-Concept (EDC) model， the average field parameters 

between the fine structure and surrounding fluid are employed instead of those Favre-averaged values in 

Chen et al.’s soot formation model. The newly extended model has been implemented in FireFOAM, a 

large eddy simulation (LES) based solver for fire simulation based on the open source CFD code 

OpenFOAM®. Numerical simulations of a 30 cm diameter heptane and toluene pool fires tested by 

Klassen and Gore [29] were performed for validation. The predicted soot volume fraction and 

temperature have achieved improved agreement with the experimental measurements in comparison 

with that of Chen et al. [24, 25],  demonstrating the potential of the improved PaSR-based soot model 

for fire applications. 
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Nomenclatures  sY~  
soot mass fraction 

OA  pre-exponential factor Z  mixture fraction 

LspA  fuel-independent constant OS,Z  
critical mixture fractions for 

soot oxidation 

SA  soot particulate surface area fS,Z  
critical mixture fractions for 

soot formation 

b  stoichiometric oxygen-fuel ratio stZ  stoichiometric mixture fraction 

pC  specific heat  Greek symbols  

SPC
 

constant   density 

D   laminar diffusion coefficient tv
 

turbulent kinematic viscosity 

coefficient 
*D  

characteristic plume length scale s
 filtered soot source term 

0a
E  

activation energy for soot 

oxidation fS ,  laminar soot formation rate 

vf  soot volume fraction OS ,  laminar soot formation rate 

g  gravity acceleration   exponent for temperature 

H  height fS ,  constant 

k  total turbulent kinetic energy OS ,  constant 

LSP  smoke point height fS ,  mass fraction of the reacting 

part for soot formation 

*m  
mass transfer per unit of mass of 

the fine structure region 
OS ,

 
mass fraction of the reacting 

part for soot oxidation 

p  Favre- averaged pressure cfS ,,
 

characteristic time for soot 

formation 

tPr
 turbulent Prandtl number cOS ,,

 
characteristic time for soot 

oxidation 

Q  heat release rate mix
 

Characteristic time for 

turbulent mixing 

T  activation temperature v  kinematic viscosity coefficient 

0T  activation temperature s  soot absorption coefficient 

T  ambient air temperature   dissipation rate 

SurT  Temperature in surround fluid *  
mass fraction of the fine 

structures 

*T  temperature in fine structures   
reacting fraction of the fine 

structures 

u  velocity   ambient air density 

kW  atomic weight for element  k  Subscripts  

*Y  
species mass fraction in fine 

structures 
F  fuel stream 

fuY  fuel mass fraction Superscripts  
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0

fuY  
fuel mass fraction in the fuel 

stream 
I values at the inlet 

kŶ  elemental mass fraction   values under ambient condition 

2OY  oxygen mass fraction C carbon 
0

2OY  ambient oxygen mass fraction H hydrogen 

SurY  
species mass fraction in surround 

fluid 
O oxygen 

 

1. Introduction 

Soot and thermal radiation are two key factors affecting fire hazards. Soot particulates together 

with carbon dioxide and water vapour etc. are the main components of fire smoke, which decreases 

visibility. On the other hand, soot is the main contributor to thermal radiation from hydrocarbon fires; 

but for very large hydrocarbon fires, smoke shielding also has the effect of blocking the emitted flame 

radiation from escaping out to the surroundings [1-5]. Accurate prediction of soot formation and 

oxidation is hence of considerable importance to fire hazards analysis.  

The complexity of soot formation chemistry is related to its nucleation, inception, coagulation 

and agglomeration. Detailed soot chemistry models [6-9] were previously developed to cater for all 

these underlying physics. However, they are computationally expensive and impractical for use in fire 

safety engineering. Various empirical soot models developed up to date either directly use experimental 

measurements [10,11] or indirectly employ experimental measurements for parameter calibration [12]. 

But as commented by Lautenberger [13], the empirical models are only suitable for special fuel, 

oxidation and pressure conditions which were covered in the test data used for their derivation. Model 

constants determined from tests of certain fuel and burning conditions cannot be applied to other fuel 

and conditions. A better choice is hence the semi-empirical models which are a compromise of the 

above two approaches and can be extended to a wide variety of fuels and applied to most fire sceneries 

with acceptable computational cost. Such semi-empirical models should also avoid both detailed soot 

chemistry and the calculations of soot particle number density and its surface area. 
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The potential of a smoke point based model to alleviate these limitations of the empirical models 

were recognized by Markstein and De Ris [14] in the 1980s. The concept was further elaborated by 

Delichatsios [15] who derived a global soot formation rate based on the experiemental analysis and 

concluded that the soot propensity of a fuel is inversely proportional to its laminar smoke point (LSP) 

height. Lautenberger et al. [16] related the peak soot formation rate to LSP and  modeled soot oxidation 

as a surface area independent process. Beji et al. [17,18] employed an Arrhenius reaction rate for soot 

formation by considering a temperature exponent and an activation temperature in combination with a 

constant soot oxidation rate of 1 kg/m
3
.s

-1
.  Their work was further continued by Yao et al. [19] who 

used the soot oxidation model of Lindstedt and co-workers[20, 21] to remove the emipirically suggested 

constant by Beji et al. [17,18]. Although promising, the applicability of the LSP approach to fires, which 

are buoyancy-driven and generally turbulent, depends on its extension from laminar to the turbulent 

regime. Yao et al. [19,22] adopted the conditional moment closure (CMC) and Alternative Conditional 

Source-term Estimation (A-CSE)  approaches to treat the soot source term in turbulent pool fires, but 

their model requires solution of the integrated equations to obtain the conditional scalars and is 

computationally expensive.  Chatterjee et al. [23] proposed a “radiatively perturbed laminar flamelet” 

concept to account for turbulent soot formation and oxidation, which appears promising but its wide 

application is hindered by the optically thin assumption during the construction of the lookup table. 

Chen et al. [24,25] extended the laminar smoke point based soot model to turbulent combustion using 

the Partially-Stirred-Reactor (PaSR) concept, but assumed infinitely fast soot oxidation chemistry and 

constant soot formation characteristic time.  

In the present study, three significant modifications have been introduced to the PaSR based soot 

model proposed by Chen et al. [24, 25]: (1) The PaSR concept is used for both turbulent soot formation 

and oxidation while Chen et al. [24, 25] used the PaSR concept for turbulent soot formation and the 

EDC concept for turbulent soot oxidation; (2) the finite value of the laminar soot oxidation rate is 

computed with an established formula [20,21,26]; (3) Instead of fixing the characteristic time for soot 
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formation as a constant which is non-physical, new formulas are proposed to compute it together with 

the characteristic time for soot oxidation, based on the time-and-space dependent characteristic time;  

and (4) the average parameters between the fine structure and surrounding fluid in the EDC model are 

employed instead of those Favre- averaged values. The new model gives due consideration to the 

essential physics of soot formation and oxidation while maintaining simplicity and computational 

efficiency. The new model has been implemented in an in-house version [24-25] of the FireFOAM code 

[27], a large eddy simulation (LES) based solver for fire simulation within the open source CFD code 

OpenFOAM® Toolbox [28]. For validation, the 30 cm diameter heptane and toluene pool fires tested by 

Klassen and Gore [29] have been simulated. 

2. Soot Model 

For turbulent flames, a spatial filtering soot transport equation [24, 25] are expressed as 
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where u ,  and sY~  are the velocity, density and soot mass fraction, respectively. D , tv , tPr  denote 

laminar diffusion coefficient, turbulent kinematic viscosity, and turbulent Prandtl number. The filtered 

soot source term, s  is computed as the difference of soot formation and oxidation rates,  

                     sosfs    

(2)

 

2.1 Laminar Soot Formation 

Based on the LSP concept, the global soot formation model was originally proposed by 

Delichatsios [15], further developed by Beji et al.[17] and applied to fire simulations by Yao et al. 

[19] and Chen et al. [24, 25]. The laminar soot formation rate ( fS , ) can be expressed as follows:  
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where LSPA  is fuel-independent constant, chosen as 64.4 e  . The exponent for temperature 25.2  and 

activation temperature KT 20000   are specified following Beji et al. [17]. 0

fuY , Lsp  and T  are the fuel 

mass fraction in the fuel stream, smoke point height and temperature, respectively. Z  is the mixture 

fraction, expressed as 
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 (4) 

where  0

2OY  and b  denote ambient oxygen mass fraction and b  is the stoichiometric oxygen-fuel ratio. 

fuY and 
2OY are the mass fractions of fuel and oxygen. The stoichiometric mixture fraction stZ  can be 

expressed as 

                       

                       
00

0

st

2

2Z
Ofu

O

YbY

Y


  (5) 

fS,Z  and OS,Z  are critical mixture fractions for soot formation and oxidation, respectively. They could be 

normalized by the stoichiometric mixture fraction ( stZ )  [16, 18]: 

                     stfS Z,fS,Z              (6) 

                     stOS Z,OS,Z    (7) 

where fS ,  and OS , are assumed as fuel-independent constants, chosen as 2.5 and 1 following Beji et al. 

[18], respectively.  
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2.2 Laminar Soot Oxidation 

In the model of Chen et al. [24, 25], laminar soot oxidation is assumed to be infinitely 

fast. This is an acceptable assumption only when the turbulent mixing is relatively slow. The 

actual soot oxidation rate is finite and dependent on its surface area. Following previous 

researchers [19-21,26], the following expression is used instead:  

 
























else                                                                  

K   1300T and ZZ0             /kg/m        AYeTY OS,

3

SS

RT

E

0.5

O,

0a

2

0

sAOOS   (8) 

where 120OA [21], molJEa /163540
0
 and gmAS /160 2 [19] are the pre-exponential factor, 

activation energy for soot oxidation and soot particulate surface area, respectively.  

2.3 Turbulent Soot Formation and Oxidation 

As described by Chen et al. [24, 25], the Partially Stirred Reactor (PaSR) concept [30-32] is 

adopted as the basis of their extension of LSP to turbulent combustion.  In the PaSR approach, each 

computational cell is split into two zones. All reactions occur in the reacting part while there is no 

reaction in the non-reacting zone. The composition in the non-reacting part changes due to mass 

exchange with the reacting part through turbulent diffusion. The reacting part is treated as a perfectly 

stirred reactor (PSR), in which all species are assumed to be perfectly mixed with each other and no 

turbulence is involved.  It is assumed that the laminar soot formation and oxidation occur only in the 

reacting part and soot turbulent transportation takes place between the reacting and non-reacting parts in 

a cell. Following the PaSR concept, the filtered soot formation rate in the LES framework can be 

expressed as: 
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where fS ,  and  OS ,  can be regarded as the mass fractions of the reacting part for soot formation and 

oxidation in a cell and expressed as 
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where cfS ,,  and  cOS ,,  are the characteristic time for soot formation and oxidation respectively.  Chen et 

al. [24, 25] directly related cfS ,,  with laminar smoke point height as LSPCSPcfS ,, , and assumed that  

SPC  is a constant. Based on a previous finding that cfS ,,  is a constant value of 40 ms for laminar 

ethylene diffusion flame [33], they obtained ms
LSP

C
ethylene

ethylenecfS

SP /.
,,, 3770


 and further assumed that 

cfS ,,  is a constant for one specified gas everywhere. In reality, SPC  may be not a constant for any 

laminar flame and cfS ,,  is determined by local fuel concentration and soot formation rate; and hence 

varies with space location. The situation for cOS ,,  is also similar, and it is determined by local soot 

concentration, oxygen concentration and soot oxidation rate.  According to the definition of chemical 

reaction characteristic time, it is hence proposed that  cfS ,,  and cOS ,,  can be expressed as 
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 (12) 

The characteristic time for turbulent mixing  mix  can be calculated as the geometric mean of the 

Kolmogorov and Taylor length scales, which was firstly suggested by Karlsson and Chomiak [34,35] .  

Chen et al.[ 24, 25] employed it in turbulent fire simulations and found it can yield better results.  So 

here, mix  is expressed as 

                           




kv
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  (13) 
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where v  is the kinematic viscosity coefficient. k  and   are total turbulent kinetic energy and its 

dissipation rate in the LES framework. 

In this paper, the Eddy-Dissipation-Concept (EDC) Model was employed to account for 

combustion rate calculation. It was originally developed by Magnussen et al. [33, 34], and recently 

extended to LES by Chen et al. [19,20] and further modified by Wang et al. [35] to handle multi-

component fuels. Just like PaSR, EDC also splits a computational cell into the reacting and non-reacting 

zones. The reacting zone in EDC is the reacting part of the fine structure while the non-reacting zone is 

the combination of the non-reacting part of fine structure and surrounding fluid zone. Magnussen [37] 

suggested that soot could be produced not only in the fine structures but also surrounding fluids since its 

formation is relatively slow in comparison to gaseous combustion. Therefore in each computational cell, 

the reacting and non-reacting zones for soot are different from that for combustion in the EDC context.  

Since gas combustion is much faster than soot chemistry and the latter has relatively little influence on 

flame temperature and other field parameters like fuŶ , O2Ŷ ,T̂  and ̂  in formula (9), it is therefore 

feasible to use the average values between the fine structure and surrounding fluid calculated by the 

EDC model for soot computations. It should also be noted that these parameters, especially temperature, 

are computed before heat transfer between different cells is solved. Moreover, they are also significantly 

different from or higher than the filtered and Favre- averaged values.  
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where  
kŶ  and kW  are the elemental mass fraction and atomic weight for element k ; Superscripts I and 

 refer to values at the inlet and ambient condition, respectively; Superscripts C, H, O are carbon, 

hydrogen and oxygen. Subscript F  denotes fuel stream; p  is Favre- averaged pressure. *T  and *Y   are 

temperature and species mass fraction in fine structures while  SurT  and SurY  are those in surround fluid. 

*   and   are  mass fraction and reacting fraction of the fine structures, respectively. To calculate these 

parameters in EDC, please refer to [37, 24, 25].  

       

3. Numerical Setup 

The above modifications were implemented into an in-house version of the FireFOAM code [24-

25]. The equations for continuity, species mass fraction, momentum, sensible enthalpy and soot mass 

fraction are solved implicitly using the finite volume method. The time term is discretized using the 

backward time scheme with second order accuracy, and the limited central differencing scheme with 

second order accuracy is used to discretise the convection term. The diffusion term and gradient term are 

evaluated by the central differencing scheme. The finite volume discrete ordinates model (fvDOM) was 

employed to resolve the radiative heat transfer equation. The total absorption coefficient is calculated as 

the sum of the component gas absorption coefficient by the Weighted-Sum-of-Gray-Gases Model 

[39,40], and soot absorption coefficient computed following Chatterjee et al. [23], Tfvs 1226 ,where 

vf  denotes soot volume fraction. 

For validation, the 30 cm diameter heptane and toluene pool fires tested by Klassen and Gore [29] 

are simulated. The computational domain is a cylinder 2 m in diameter and 4 m high. Preliminary tests 

have shown that such a domain size is sufficiently large to avoid the influence of boundary effects on 

the pool fire development. Non-uniform grids are used with finer mesh clustered around the pool. The 

feeding rates for heptane and toluene are calculated as 2.559g/s and 3.05 g/s from the mass burning rates 

in the experiment [29], giving a theoretical heat release rate of 115 kW and 125 kW, respectively. As 
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temperature on the liquid fuel surface is believed to be steady if the boiling point is reached due to the 

continuous radiation feedback from the flame, the inlet temperatures are set to the boiling points of 

heptane (372 K) and toluene (384 K), respectively. The laminar smoke point heights are set as  0.147 m 

and 0.008 m following Tewarson [41] for heptane and toluene.   

Three different grid resolutions were applied with the cell number of 16, 24 and 32 across the 

diameter of the pool.  In another measure, around 22, 33 and 45 cells are used for the characteristic 

plume length scale 

5/2

*D















 gTC

Q

p
,where  Q , pC ,  , T and g  denote heat release rate, 

specific heat, ambient air density, ambient air temperature and  gravity acceleration respectively. 

Comparison of the predictions with the three different grid resolutions will be provided for the centreline 

temperature distributions while the predictions with the medium grid resolution (24 cells across the pool) 

are used to prepare the plots.   

4. Results and Discussions 

4.1 Heptane Pool Fire 

4.1.1 Temperature 

Figure 1 presents the comparison of the predicted centreline mean temperature rise with the 

measurements of Klassen and Gore [29]. The x-coordinate is the normalised height against 

2/5Q following McCaffrey [42]. The continuous flame zone corresponds to 08.0H/Q2/5  (or 8.1/H D ) 

while the intermittent flame zone is in the region 2.0H/Q08.0 2/5  (or 45.4/H8.1  D ). No 

significant difference was found between the final solutions produced by three grid resolutions. The 

predictions are in good agreement with the measurements of Klassen and Gore [29] in the continuous 

and intermittent flame zones. Only when 
2/5H/Q is close to 0.2, the predictions differ considerably with 

the experimental data. The latter shows much steeper drop. As commented by Klassen and Gore [29], 

the temperature was measured based on the light intensities at two wavelengths. Close to the end of the 
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flame intermittent zone, the measured temperatures exhibited a relatively large fluctuation, which 

caused some uncertainty in the measurements. This disagreement may be also partly attributed to the 

numerical models. 

Figure 2 presents mean temperature rise along the centerline predicted by the current model and 

that of Chen et al. [24, 25]. The predictions are generally very close, only when 
2/5H/Q  falls within the 

range of 0.08~0.2, the current model predicted slightly higher temperature than that of Chen et al. [24, 

25]. The maximum discrepancy is around 66K. This implies that the current model predicts a higher 

temperature in the intermittent flame zone. 

Figure 3 presents the comparison between the predicted and measured mean temperature 

distributions at five different heights along the radial direction.  The predicted mean temperature profile 

follows well the trend of the measurements. At H/D=0.9 and 1.5, the temperature near the centreline is 

well predicted but considerable discrepancies are observed in the outer region or 0.04m away from the 

burner centreline. At H/D=2.2 and 3.4, the predicted temperature profiles agree well with the 

measurements. With further increase of height, e.g. at H/D=4.3, the temperature is over-predicted. Since 

this height corresponds to the intermittent flame region, the actual flame in this region was observed to 

sway transversely, causing the averaged flame area wider than the experimental and the temperature 

measurements being somehow smeared [29]. Comparing the results predicted by both models, just like 

the centerline temperature, the current model predicts slightly higher temperature than that of  Chen et al. 

[24, 25].  The discrepancy is more significant for the higher regions with H/D ≥2.2.  

It is, however, encouraging to note that in the main soot formation zone or near the centreline, 

the temperature is predicted with reasonably good accuracy. 

4.1.2 Soot Volume Fraction 

Figure 4 presents mean soot volume fractions along the centreline as a function of normalized 

height for the heptane pool fire, predicted by the current and Chen et al.'s [24, 25] models.  It is found 
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that, for 
1/52/5 m/kW 0.054H/Q  , the current model predicted higher soot volume fraction than that of 

Chen et al. [24, 25] , and the maximum ratio of soot volume fraction predicted by the two models is 

about 1.9. The inverse trend can be observed with the maximum discrepancy of 9.6% for 

1/52/5 m/kW.H/Q 0540 . 

Figure 5 presents the predicted soot volume fractions in the radial direction at different heights 

together with the measurements. The predictions are in reasonably good agreement with the 

experimental data. A relatively large discrepancy is observed near the centreline at H/D=0.9. The 

predicted value ranges from 0.4 ppm to 0.6 ppm while the measured value is around 0.6~0.8 ppm. This 

is opposite to the temperature predictions at the same height as shown in Fig.3, where the temperature 

near the centreline is well predicted but considerable discrepancies are seen in the outer region. This 

implies that soot formation and oxidation are not only affected by the temperature but also the local 

turbulence; and the latter evidently plays a dominant role. As shown in eqs. (10) , (11) and (13), 

turbulent mixing determines firstly the turbulence mixing time and then the mass fractions of the 

reacting part for soot formation and oxidation in each cell. For pool fires, the actual turbulence is 

relatively weak close to the burner surface in the persistent flame region. So the turbulence mixing time 

near the centreline at H/D=0.9 is over predicted. This is thought to be the main reason for the 

discrepancy in the predictions of the soot volume fraction near the pool surface.  

As discussed above, with the increase of H/D, the current model predicts slightly higher 

temperature than that of Chen et al. [24, 25]. But for the soot volume fractions, this trend cannot be 

observed. For H/D ≥1.5, both models predicted nearly the same soot volume fractions. However, for 

H/D=0.9, the predicted soot volume fraction by the current model is closer to the measured data than 

that of Chen et al. [24, 25].  
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4.1.3 Soot formation and oxidation rates 

Figure 6 presents soot formation and oxidation rates in the reacting parts along the centreline 

predicted by the current model and that of Chen et al. [24, 25] for the heptane pool fire. Both models 

predicted nearly identical soot formation rates in the reacting parts except some small differences near 

the peaks.  But for soot oxidation rates in the reacting parts, Chen et al. predicted much larger rate than 

the current model due to its assumption of infinite soot oxidation.  

Figure 7 presents turbulent soot formation and oxidation rates predicted by the two models. Even 

though a large discrepancy is shown in the laminar parts of the oxidation rates, the predictions of the two 

models are quite close. This is thought to be due to the fact that Chen et al. [24, 25] used the EDC 

concept to compensate the discrepancy due to the assumption of infinite laminar soot formation rate, by 

the following formula 












else                                                    0

K 1300T and ZZ0                     

~

OS,*

**

, 


 1

mYS

OS


                                                           (18) 

where *m  is mass transfer per unit of mass of the fine structure region. 

4.1.4 Characteristic time scales 

Figure 8 presents the contours of  mix , cfS ,,  and  cOS ,,  for heptane pool fire.  The characteristic 

time for turbulent mixing  mix falls in the range of 0~10 s. According to this, the flow fields of cfS ,,  and  

cOS ,,  are scaled to 0~100 s, as shown in Figure 8(b) and (c). It is found that both cfS ,,  and  cOS ,, , which 

has the same order as or one order higher than mix , fall in the regions of fire plume boundary and fire 

surface. Actually only cfS ,,  and  cOS ,,  in fire surface can contribute to the soot formation and oxidation 

due to enough high temperature.  So the limited region can be available for soot formation and oxidation.  
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4.2Toluene Pool Fire 

4.2.1 Temperature 

Figure 9 presents the comparison of the predicted centreline mean temperature rise with the 

measurements of Klassen and Gore [29] for the toluene pool fire. Similar to the case of the heptane pool 

fire, the predictions of the three grid resolutions are nearly the same and in good agreement with the 

measurements of Klassen and Gore [29] in the continuous and intermittent flame zones. But when 

2/5H/Q is close to 0.2, the predictions are slightly higher than the experimental data.  

Figure 10 presents mean temperature rise alone the centreline, predicted by the current model 

and that of Chen et al. [24, 25]. The results are generally very close except for the region of 
2/5H/Q  > 

0.1, the current model predicted slightly higher temperature than their model with the largest 

discrepancy being around 89 K. 

Figure 11 shows the comparison between the predicted and measured temperature profiles in the 

radial direction at different heights. The predicted temperature profiles show similar trends as the 

measurements. However, the model over-predicted the temperatures away from the centreline at every 

examined height. It is thought that this is mainly caused by some known uncertainties in the 

experimental measurements although model assumptions might also have contributed to some degree. In 

the experiment, as reported by Klassen and Gore[29], the time-averaged flame height was measured as 

1.30 m, indicating that the position of H/D=4.3 (equivalent to H=1.29 m) would roughly correspond to 

the position of the flame tip or in the intermittent flame region.  This cast doubt on the measured 

temperature of 450 K near the centreline at H/D=4.3, implying the existence of considerable uncertainty 

in the temperature measurements or significant heat loss from the flame to the environment which was 

not described in the paper.   
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4.2.2 Soot Volume Fraction 

           Figure 12 presents mean soot volume fractions along the centreline vs. normalized height for the 

toluene pool fire, predicted by current model and Chen et al.'s[24, 25].  Compared with heptane pool fire, 

similar variation trend of soot volume fractions by two models can be observed for toluene pool fire. 

However, 2/5H/Q at the first cross point is shifted from 1/50.054m/kW to 1/5m/kW 0.057 . The maximum 

ratio of soot volume fraction by two models is about 8 for 
1/52/5 m/kW 0.057H/Q   while it is around 1.2 

for 
1/52/5 7m/kW.H/Q 050 . 

Figure 13 presents the predicted and measured soot volume fractions along the radial direction at 

different heights by the two models. Generally, the predictions of the current model are in reasonable 

agreement with the measurements. However, at H/D=0.8 and 2.3, the model under-predicted the soot 

volume fraction near the centreline. As discussed earlier for the case of the heptane fire, the predicted 

turbulence mixing time is significantly lower than the experimental one. But in the outer region with 

distance more than 0.04m from the burner centreline, the model performed well.  The predictions of the 

model of Chen et al. [24, 25] are close to the current model for each H/D.   

4.2.3 Soot formation and oxidation rates 

Figure 14 presents laminar parts of soot formation and oxidation rates predicted by the two 

models. It is easily observed that both models predicted nearly the identical laminar part of soot 

formation rate. However, for the laminar parts of soot oxidation rate, the predictions of Chen et al. [24, 

25] are more than an order of magnitude larger than that of the current model. As discussed earlier for 

the case of the heptane fire, this discrepancy is attributed to the assumption of infinite laminar soot 

oxidation rate in the model of Chen et al. [24, 25].  

Figure 15 presents the turbulent soot formation and oxidation rates predicted by the two models. 

As for the heptane fire, both models predicted nearly the same turbulent soot formation and oxidation 

rates, but the model of Chen et al. [24, 25] predicted slightly larger peak for the soot formation rate and 
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smaller peak for the oxidation rate. The largest discrepancies for the predicted turbulent soot formation 

and oxidation rates by the two models are about 24% and 37%, respectively.  

4.2.4 Characteristic time scales 

Figure 16 presents the contours of  mix , cfS ,,  and  cOS ,,  for toluene pool fire.  Similar to heptane 

pool fire, both cfS ,,  and  cOS ,,  in toluene pool fire, which has the same order as or one order higher than 

mix , also fall in the regions of fire plume boundary and fire surface. For both heptane and toluene pool 

fires, it is easy to be deduced that SPC is not a constant and moreover varies with space location.   

5. Conclusions 

The extension of the laminar smoke point based approach to turbulent combustion using the 

partially stirred reactor (PaSR) concept proposed by Chen et al. [24, 25] has been modified to overcome 

the limitation associated with the assumption of infinitely fast soot oxidation chemistry and constant 

soot formation characteristic time. The mass fractions of the reacting zone in each cell for soot 

formation fs,  and oxidation os,  are introduced. Both soot formation and oxidation are considered as 

taking place at finite rates while fs, and os,  are recomputed from the turbulence characteristic time 

and the newly introduced soot formation and oxidation characteristic time based on time-and-space 

dependent parameters. The governing equations have been modified to take into account both soot 

formation and oxidiation rates. The average parameters between the fine structure and surrounding fluid 

computed by the EDC are employed instead of those Favre-averaged values in soot formation model [24, 

25]. All these modifications have been implemented into the FireFOAM code for testing within a CFD 

environement.  

For model validation, numerical simulations were conducted for the 30 cm diameter heptane and 

toluene pool fires tested by Klassen and Gore [29]. Reasonably good agreement has been achieved 

between the predicted and measured soot volume fractions in both cases while relatively large 
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discrepancies are seen for the recorded height in the persistent flame zone close to the pool centerline. 

The predicted temperature distributions along the centreline and the radial directions at different heights 

for the heptane fire are found to be in good agreement with the measurements. The temperature 

predictions for the toluene pool fire are found to be generally higher than the measurements but the 

decrepancies are likely to be mainly caused by the known uncertainties in the measurements[29]  with 

some contributions from the model.  The characterisitic times for soot formation and oxidation, which 

has the same order as or one order higher than the characterisitic time for turbulent mixing , fall in the 

regions of fire plume boundary and fire surface.  

In comparison with the previously developed soot model of Chen et al. [24, 25], the predictions 

of the current model for soot formation and oxidition rates are closer to the measurements for most cases, 

especially close to the fire base. However, there are no significant differences between the predictions of 

the two models for the heights and axis examined. A possible explanation is that despite the unphysical 

assumption of infinite rate of lamilar soot oxidation by Chen et al. [24, 25], their use of the EDC 

aproach to calculate soot oxidation has to some extent offset the discrepancy which could have been 

caused by this assumption. The present model is physically more sound. Further tests with different sets 

of data will be useful to formulate more conclusive recommendations but this is unfortunately hindered 

by the lack of soot measurements for pool fires. 
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Fig.1 Mean temperature rise along the centreline vs normalized height for the heptane pool fire. 

 

Fig.2 Mean temperature rise along the centreline vs normalized height for the heptane pool fire, 

predicted by the current and Chen et al.'s [24, 25] models. 
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Fig.3 Comparison between the predicted and measured temperature profiles in the radial direction at 

different heights for the heptane pool fire. 
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Fig.4 Mean soot volume fractions along the centreline vs normalized height for the heptane pool 

fire, predicted by the current and Chen et al.'s [24, 25] models. 
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Fig.5 Comparison between predicted and measured soot volume fractions in the radial direction at 

different heights for the heptane pool fire. 
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Fig.6  Soot formation and oxidation rates in the reacting parts along the centreline predicted by the 

current and Chen et al.'s [24, 25] models for the heptane pool fire. 

 

Fig.7  Turbulent soot formation and oxidation rates along the centreline predicted by the current and 

Chen et al.'s [24, 25] models for the heptane pool fire. 
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   (a) mix                                              (b) cfS ,,                                                   (c) cOS ,,  

Fig.8   Characteristic time scales for the heptane pool fire. 

 

 

Fig.9 Mean temperature rise along the centreline vs normalized height for the toluene pool fire. 
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Fig.10 Mean temperature rise along the centreline vs normalized height for the toluene pool fire, 

predicted by current model and Chen et al.'s[24, 25]. 

 

 

Fig.11 Comparison between predicted and measured temperature profiles in the radial direction at 

different heights for the toluene pool fire. 
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Fig.12 Mean soot volume fractions along the centreline vs normalized height for the toluene pool 

fire, predicted by current and Chen et al.'s [24, 25] models. 

  

 

Fig.13 Comparison between the predicted and measured soot volume fractions in the radial direction at 

different heights for the toluene pool fire. 
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Fig.14  Soot formation and oxidation rates in the reacting part along the centreline predicted by the 

current and Chen et al.'s [24, 25] models for the toluene pool fire. 

 

 

Fig.15  Turbulent soot formation and oxidation rates along the centreline predicted by the current and 

Chen et al.'s [24, 25] models for the toluene pool fire. 
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(a) mix                                              (b) cfS ,,                                      (c) cOS ,,  

Fig.16   The predicted characteristic time scales for the toluene pool fire. 
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Figure Captions 

Fig.1 Mean temperature rise along the centreline vs normalized height for the heptane pool fire. 

 

Fig.2 Mean temperature rise along the centreline vs normalized height for the heptane pool fire, 

predicted by the current and Chen et al.'s [24, 25] models. 

 

Fig.3 Comparison between the predicted and measured temperature profiles in the radial direction at 

different heights for the heptane pool fire. 

 

Fig.4 Mean soot volume fractions along the centreline vs normalized height for the heptane pool fire, 

predicted by the current and Chen et al.'s [24, 25] models. 

Fig.5 Comparison between predicted and measured soot volume fractions in the radial direction at 

different heights for the heptane pool fire. 

Fig.6  Soot formation and oxidation rates in the reacting parts along the centreline predicted by the 

current and Chen et al.'s [24, 25] models for the heptane pool fire. 

Fig.7  Turbulent soot formation and oxidation rates along the centreline predicted by the current and 

Chen et al.'s [24, 25] models for the heptane pool fire. 

Fig.8   Characteristic time scales for the heptane pool fire. 

 

Fig.9 Mean temperature rise along the centreline vs normalized height for the toluene pool fire. 

Fig.10 Mean temperature rise along the centreline vs normalized height for the toluene pool fire, 

predicted by current model and Chen et al.'s[24, 25]. 
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Fig.11 Comparison between predicted and measured temperature profiles in the radial direction at 

different heights for the toluene pool fire. 

Fig.12 Mean soot volume fractions along the centreline vs normalized height for the toluene pool fire, 

predicted by current and Chen et al.'s [24, 25] models. 

 

Fig.13 Comparison between the predicted and measured soot volume fractions in the radial direction at 

different heights for the toluene pool fire. 

 

Fig.14  Soot formation and oxidation rates in the reacting part along the centreline predicted by the 

current and Chen et al.'s [24, 25] models for the toluene pool fire. 

 

Fig.15  Turbulent soot formation and oxidation rates along the centreline predicted by the current and 

Chen et al.'s [24, 25] models for the toluene pool fire. 

 

Fig.16   The predicted characteristic time scales for the toluene pool fire. 

 

 

 


